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Context-sensitive inter-procedural alias analyses are more precise than intra-procedural alias analyses. How-

ever, context-sensitive inter-procedural alias analyses are not scalable. As a consequence, most of the production

compilers sacrifice precision for scalability and implement intra-procedural alias analysis. The alias analysis is

used by many compiler optimizations, including loop transformations. Due to the imprecision of alias analysis,

the program’s performance may suffer, especially in the presence of loops.

Previous work proposed a general approach based on code-versioning with dynamic checks to disam-

biguate pointers at runtime. However, the overhead of dynamic checks in this approach is 𝑂 (𝑙𝑜𝑔 𝑛), which

is substantially high to enable interesting optimizations. Other suggested approaches, e.g., polyhedral and

symbolic range analysis, have 𝑂 (1) overheads, but they only work for loops with certain constraints. The

production compilers, such as LLVM and GCC, use scalar evolution analysis to compute an 𝑂 (1) range check

for loops to resolve memory dependencies at runtime. However, this approach also can only be applied to

loops with certain constraints.

In this work, we present our tool, Scout, that can disambiguate two pointers at runtime using single

memory access. Scout is based on the key idea to constrain the allocation size and alignment during memory

allocations. Scout can also disambiguate array accesses within a loop for which the existing 𝑂 (1) range

checks technique cannot be applied. In addition, Scout uses feedback from static optimizations to reduce the

number of dynamic checks needed for optimizations.

Our technique enabled new opportunities for loop-invariant code motion, dead store elimination, loop-

vectorization, and load elimination in an already optimized code. Our performance improvements are up to

51.11% for Polybench and up to 0.89% for CPU SPEC 2017 suites. The geometric means for our allocator’s CPU

and memory overheads for CPU SPEC 2017 benchmarks are 1.05%, and 7.47%, respectively. For Polybench

benchmarks, the geometric mean of CPU and memory overheads are 0.21% and 0.13%, respectively.
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1 INTRODUCTION

Alias analysis is the backbone of many compiler optimizations such as automatic vectorization
[Karrenberg and Hack 2011], loop invariant code motion, various loop transformations, and scalar
promotion that includes dead store elimination and load elimination [Chow et al. 1997; Surendran
et al. 2014], etc. These transformation passes rely on information concerning memory dependencies.
This is where alias analysis plays its role. Alias analysis determines whether a pair of pointers has
overlapping memory addresses, i.e., whether the pointers depend on each other. Alias analysis is,
therefore, an essential aspect of the compiler. A variety of algorithms have been proposed in the
past to perform alias analysis [Andersen and Lee 2005; Cooper and Kennedy 1989; Diwan et al.
1998; Hardekopf and Lin 2009, 2011; Hind et al. 1999; Jaiswal et al. 2018; Lattner et al. 2007; Pearce
et al. 2007; Shapiro and Horwitz 1997; Steensgaard 1996].

Alias analysis is undecidable in the presence of conditional statements, loops, dynamic storage,
and recursive data structure [LANDI 1992; Ramalingam 1994]. The efficiency of an alias analysis is
measured in terms of scalability and precision. Intra-procedural alias analyses [Hardekopf and Lin
2011; Zheng and Rugina 2008] tend to have low precision but have high scalability. On the other
hand, context-sensitive inter-procedural alias analyses [Berndl et al. 2003; Whaley and Lam 2004;
Zhu 2005] have high precision but are not scalable. Many production compilers sacrifice precision
for scalability and rely on intra-procedural alias analysis to resolve data dependency.
Due to these limitations of static alias analysis, existing techniques [Alves et al. 2015; Doerfert

et al. 2017; Sampaio et al. 2017] and production compilers [lvR 2022; Naishlos 2004] implement
loop-versioning with dynamic checks for overlapping memory accesses within a loop. The loop
version that does not have overlapping accesses can be optimized further by the loop transformation
passes.

Polyhedral model [Bondhugula et al. 2008; Feautrier 1992] and symbolic range analysis [Nazaré
et al. 2014; Paisante et al. 2016; Rugina and Rinard 2000] can compute an𝑂 (1) dynamic range check
to disambiguate the memory regions accessed within a loop. These checks are placed outside the
loop and used as a condition for loop-versioning. These techniques can disambiguate memory
regions even if they belong to the same array. The polyhedral analysis requires loop bounds and all
data access functions to be an affine combination of loop induction variables and loop invariants
[Alves et al. 2015; Bondhugula et al. 2008]. Symbolic range analysis can additionally handle non-
affine accesses within a loop; however, polyhedral analysis is more precise when both of these
techniques can be applied to a loop. Both polyhedral analysis and symbolic range analyses require:

(1) Loop bounds to be loop invariants, and
(2) Loop to be iterated using affine induction variable.

The existing implementation of the LLVM compiler also uses loop-versioning and𝑂 (1) dynamic
checks to improve the program’s performance by disambiguating pointers at runtime. However,
it also requires loops to satisfy the conditions mentioned above. The LLVM compiler uses scalar
evolution analysis [Van Engelen 2000, 2001] to compute the loop bounds and affinememory accesses
within a loop.

Consider the following example:

void foo(int *a, int *b, int *c, int *size) {

for (int i = 0; i < *size; i++)

a[i] = b[i] + c[i];

}

In function foo, the upper bound of the loop (i.e., *size) is not a loop invariant, because it can
overlap with the array a which is being updated in the loop. Thus, neither polyhedral analysis
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nor symbolic range analysis can insert a dynamic check to disambiguate the array accesses within
the loop. For such loops, Alves et al. [Alves et al. 2015] propose another technique named purely
dynamic analysis that uses dynamic checks to infer if the memory accesses are performed on
different memory allocations. If so, they safely conclude that the memory accesses do not overlap,
assuming that the behavior of out-of-bounds object accesses is undefined. Thus, this technique
does not add any constraint on the array indices used to access the memory inside the loop. The
key idea in this scheme is to attach a unique tag to every object during allocation. At runtime, a
red-black tree lookup is used to compute the starting address of the object from an internal address
of an object. The starting address also serves as a unique tag for the object. Two pointer addresses
never overlap if the starting addresses of the corresponding objects (or tags) are different. The
cost of these checks is logarithmic in terms of the number of live memory allocations (𝑂 (𝑙𝑜𝑔 𝑛)
where n represents the number of live memory allocations). Such high overheads for dynamic
checks make it unsuitable for large applications. Our work is motivated by the purely dynamic
approach suggested by Alves et al. [Alves et al. 2015]. However, our focus is on minimizing the
overheads introduced by the dynamic checks that would make the approach practical for real-world
applications.

We would also like to argue that such code patterns are not uncommon, in which the loop bounds
are not loop invariants. In Figure 6, we have listed some code patterns from the CPU SPEC 2017
benchmark suite that show more than 20% improvement with our technique. Thus, optimizing
these loops is a significant problem that needs to be addressed.

This paper focuses on reducing the overhead of dynamic checks for loops on which the polyhedral
analysis or symbolic range analysis cannot be applied. Our approach, encapsulated in a tool called
Scout

1, performs dynamic checks for these loops in 𝑂 (1). The key idea is to constrain the size
and alignment during memory allocations that enable Scout to disambiguate two pointers in just
one memory access. The overheads of our checks are considerably lower than the 𝑂 (𝑙𝑜𝑔 𝑛) checks
required by Alves et al. [Alves et al. 2015].
Scout implements loop-versioning for an already optimized loop with runtime checks for

disambiguation of arrays that are accessed within the loop. The loop transformations are performed
on the loop version in which the array accesses do not overlap. If the additional non-overlapping
information actually enables some optimization, Scout keeps both versions of the loop; otherwise,
it rollbacks to the original code. Furthermore, the dynamic checks for disambiguation are added
for only those array accesses that are needed to enable the loop transformation. Scout statically
analyzes the transformed loop and the original loop to identify checks that are needed for the
transformation.
The potential benefits of our loop-versioning algorithm cannot be inferred solely at compile

time because it further depends on the path taken at runtime or how many times the loop executes.
Additionally, Scout uses a runtime profiler to identify loops for which the cost of dynamic checks
is higher than the benefits of loop transformation. Scout disables loop-versioning for these loops.

We integrated Scout with LLVM by implementing a new pass in the LLVM compilation infras-
tructure. We evaluated our technique for Polybench and CPU SPEC 2017 benchmark suites.
This paper makes the following contributions:

(1) An efficient technique that allows the compiler to explore more optimization opportunities
based on alias analysis. Our novel technique combines loop-versioning with constant time
dynamic check, explained in Section 3, to disambiguate memory accesses. The dynamic checks

1The source code and other artifacts are available at https://doi.org/10.5281/zenodo.7089827 and https://github.com/

khushboochitre/Scout-Artifact.git.
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are performed using a custom allocator, which is presented in Section 3.3. The technique further
uses a feedback mechanism to reduce the number of dynamic checks, explained in Section 3.

(2) Implementation and integration of our technique with LLVM.
(3) Estimation of the performance benefits for the Polybench and CPU SPEC 2017 benchmark

suites.

The rest of the paper is organized as follows. Section 2 provides the relevant background
knowledge. Section 3 discusses in detail the approach encapsulated by Scout. The implementation
details are discussed in Section 4. Section 5 presents and discusses the results. Some of the prior
work done in this area has been discussed in Section 6. Section 7 provides the concluding remarks.

2 BACKGROUND

2.1 Alias Analysis

Alias analysis determines whether a given pair of pointers point to the same memory locations
or not. Generally, there can be three types of relationships between a pair of pointers: must-alias,
no-alias and may-alias. The must-alias relationship represents that the pointers point to the same
memory locations during execution at given program locations. The no-alias relationship means
that the pointers never overlap during execution. The may-alias relationship represents that the
pointers sometimes have overlapping memory addresses and sometimes do not. Out of these three
relations, the must-alias and no-alias relationships are useful since these relationships provide
deterministic information to the compiler allowing it to explore optimization opportunities. These
optimizations are described in the following section.

2.2 Optimizations Leveraging Alias Information

The optimizations use alias information to generate a more efficient program version. This section
describes the optimizations used in our study that rely on alias information.

(1) Loop Invariant Code Motion (LICM): Code that can be moved outside the loop body without
affecting the semantics of the program is known as loop invariant code. This optimization
focuses on moving such code outside the loop body. Loop invariant code can be identified
using the no-alias information provided by alias analysis. The hoisted code executes less often,
improving the performance of the program.

(2) Global Value Numbering (GVN): This optimization removes partially or fully redundant
code without affecting the semantics of the program. Every variable or expression is assigned
a symbolic value. A pair of expressions or variables are assigned the same symbolic values
if proved equivalent by the alias analysis, and one can be eliminated. This optimization is
performed across basic blocks. Thus, it is known as global value numbering.

(3) Dead Store Elimination (DSE): A store that assigns value to a variable that is never used is
known as a dead store. These dead stores waste processor’s cycles. This optimization focuses
on removing such stores based on the information obtained by alias analysis.

(4) Loop Vectorization (LV): This optimization allows one operation to be performed on multiple
pairs of operands in parallel, which can be achieved using a special type of instructions known
as vector instructions. This kind of optimization can help in improving the performance of
the program significantly since it allows computations to be performed in parallel. The loop
can only be vectorized when there are no memory dependencies inside the loop body. This
information can be obtained from alias analysis.

(5) Superword-Level Parallelism Vectorizer (SLP): SLP vectorization identifies similar types
of independent instructions in a basic block. It converts the identified instructions into vector
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Fig. 1. Architecture of Scout.

instructions. This conversion allows operations to be performed in parallel instead of one at a
time.

3 SCOUT

3.1 Design Overview

Figure 1 shows the architecture of Scout. Scout works on the input program’s intermediate
representation (IR). It performs versioning for an already optimized loop with checks for non-
aliasing (non-overlapping) memory accesses within the loop. Loop transformation optimizations
are performed on the non-aliasing version of the loop. If the loop is not transformed, it is discarded;
otherwise, dynamic checks to detect non-aliasing memory accesses are inserted into the program.
The transformed program is sent to the compiler to generate the final executable. At runtime, a
custom memory allocator is linked to the executable generated by Scout. Now, we will discuss the
overview of our approach using the example in Figure 2a.

As discussed earlier, the loop at line-1 cannot be transformed using polyhedral or symbolic range
analysis because the upper bound of the loop is not a loop invariant. Scout inserts dynamic checks
to rule out the possibility of overlapping between a, b, c and size. The dynamic checks ensure that
memory accesses using a, b, c and size belong to different objects, and thus they cannot overlap
no matter what the value of i is at runtime. For fast dynamic checks, Scout sets the allocation size
and the alignment of an object during the allocation to the nearest 2𝐾 , where 2𝐾 >= allocation

size. The objects are allocated from segments. All objects on a segment are of the same size, which
is a power of two. The starting address of a segment is always aligned to 4GB. The object size
for a segment is stored on the top of the segment. We discuss the structure of a segment in more
detail in Section 3.3 using Figure 3. The starting address of a segment can be computed using
just an łandž operation from any internal address of the segment using the alignment property
of the segment. Two objects can overlap if and only if they belong to the same segment. We can
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void foo(int *a, int *b, int *c,

int *size) {

1. for(int i = 0; i < *size; i++)

2. a[i] = b[i] + c[i];

}

(a) The original code.

void foo(int *a, int *b, int *c, int *size) {

3. size_t s = GetObjectSize(a);

4. if(IsNoAlias(a, b, s) &&

5. IsNoAlias(a, c, s) &&

6. IsNoAlias(a, size, s)) {

7. int t = *size;

8. int i;

9. for (i = 0; i+3 < t; i = i+4)

10. a[i:i+3] = b[i:i+3] + c[i:i+3];

11.

12. for (; i < t; i++)

13. a[i] = b[i] + c[i];

14. }

15. else {

16. for(int i = 0; i < *size; i++)

17. a[i] = b[i] + c[i];

18. }

}

(b) The transformed code using Scout.

Fig. 2. An example to demonstrate the overview of Scout. Scout inserts dynamic checks to rule out the

possibility of overlapping between a, b, c and size. The compiler could vectorize the loop in the scope in

which memory accesses do not overlap.

check if two objects on a segment overlap using an łxorž operation and compare it with the object
size of the segment. To check non-overlapping (non-aliasing) of two pointer addresses, we first
need to compute the object size of the first pointer (at line-3). The GetObjectSize routine uses
the alignment property of the segment to compute the size in just one memory access. Once we
know the size, it is passed to the IsNoAlias routine, which takes two pointers and the object size
of first pointer as input and returns true if the pointers point to different objects. This routine does
not access any memory. In this example, Scout adds dynamic alias checks for every read-write
and write-write pointer pair because the static alias analysis returns may-alias for each of these
queries. Scout inserts additional metadata in the if-block such that the compiler can treat each
of these pointer pairs (in the if-block) as no-alias during the transformation passes. After this,
Scout performs loop transformation optimizations for the loop in the if-block. With the additional
non-aliasing information, the compiler can now vectorize the loop in the if-block, as shown in
Figure 2b. At line-10, the syntax łi:i+3ž is used to denote that four parallel writes at indices i, i+1,
i+2, i+3 are performed using a single instruction. If the compiler cannot transform the loop with
the additional non-aliasing information in the if-block, Scout restores the original code.
Unlike LV, other optimizations, i.e., LICM, DSE, and GVN, do not require checks for every

read-write and write-write pair. For example, if a load LD is moved outside the loop, we need to
check that LD does not overlap with the writes present in the loop. Let us consider that instead of
vectorizing the loop, the loop transformation pass in Figure 2 only moves *size outside the loop
(at line-7). In this case, we need to check that “size” and “a” do not overlap instead of adding
three checks as in the case of vectorization. Scout statically analyzes the original and transformed
loop in the if-block and adds only those checks needed for the transformation.
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Finally, it is possible that the optimized path is rarely taken at runtime, or the overhead of the
runtime checks is more than the benefit of the loop transformation. Scout uses a profiler to disable
loop-versioning for such loops.

We will now discuss our approach in detail in the rest of this section. In Section 3.2, we discuss the
loop-versioning algorithm. Section 3.3 discusses the structure of our custom allocator. In Section 3.4,
we describe the mechanism to perform the dynamic checks in 𝑂 (1) memory access. Finally, in
Section 3.5, we describe the profiler.

3.2 Loop-versioning

Algorithm 1 shows the steps followed by Scout to perform loop-versioning. The algorithm takes a
function IR F and a loop L as arguments. This algorithm is performed after all loop transformations
except vectorization have been performed on L. The reason is that it is hard to optimize an
already vectorized loop with additional non-overlapping information. However, the additional
non-aliasing information enables further transformations in a non-vectorized loop. Vectorization is
later performed on the transformed loop.

Input: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐹, 𝐿𝑜𝑜𝑝 𝐿

Result: 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑑/𝑈𝑛𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑑 𝐿𝑜𝑜𝑝

1 begin

2 𝐼𝑠𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑏𝑙𝑒𝐵𝑒 𝑓 𝑜𝑟𝑒 ← 𝑖𝑠𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑏𝑙𝑒 (𝐿);

3 𝑁𝐿 ← 𝑐𝑙𝑜𝑛𝑒𝐿𝑜𝑜𝑝𝑊𝑖𝑡ℎ𝐷𝑢𝑚𝑚𝑦𝐶ℎ𝑒𝑐𝑘 (𝐿);

4 𝑖𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝐴𝑙𝑖𝑎𝑠𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑁𝐿);

5 𝑅𝑢𝑛𝐿𝐼𝐶𝑀 (𝑁𝐿);

6 𝑅𝑢𝑛𝐺𝑉𝑁 (𝐹 );

7 𝑅𝑢𝑛𝐷𝑆𝐸 (𝐹 );

8 𝐼𝑠𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑏𝑙𝑒𝐴𝑓 𝑡𝑒𝑟 ← 𝑖𝑠𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑏𝑙𝑒 (𝑁𝐿);

9 if 𝑖𝑠𝐿𝑜𝑜𝑝𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑑 (𝐿, 𝑁𝐿) or

(not 𝐼𝑠𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑏𝑙𝑒𝐵𝑒 𝑓 𝑜𝑟𝑒 and 𝐼𝑠𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑏𝑙𝑒𝐴𝑓 𝑡𝑒𝑟 ) then

10 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑦𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐶ℎ𝑒𝑐𝑘𝑠 (𝐿, 𝑁𝐿);

11 𝑖𝑛𝑠𝑒𝑟𝑡𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐶ℎ𝑒𝑐𝑘𝑠 (𝐿, 𝑁𝐿);

12 𝑟𝑒𝑚𝑜𝑣𝑒𝑁𝑜𝐴𝑙𝑖𝑎𝑠𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑁𝐿);

13 else

14 𝑟𝑒𝑚𝑜𝑣𝑒𝐿𝑜𝑜𝑝𝐴𝑛𝑑𝐷𝑢𝑚𝑚𝑦𝐶ℎ𝑒𝑐𝑘 (𝑁𝐿);

15 end

16 end
Algorithm 1: Loop-versioning algorithm of Scout.

At line-3, the algorithm creates a copy of the original loop and inserts a dummy check for
non-aliasing. We refer to the versioned loop as NL in this section. At line-4, it inserts no-alias
metadata in the non-overlapping version of the loop. The compiler can use no-alias metadata to
infer that two memory accesses do not overlap. The no-alias metadata is added for only those
pointer pairs whose bases are loop invariants, and it is safe to access at least one of them inside the
loop’s preheader. It then performs LICM, GVN, and DSE optimizations (from line-5 to line-7) on
the non-overlapping version of the loop (i.e., NL). The isVectorizable routine at line-2 and line-8
does not vectorize the loop. It only checks that, at this point, the compiler can vectorize this loop if
needed.
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Fig. 3. Structure of a Segment.

Scout takes feedback from static optimizations and decides whether the loop was optimized or
not. The versioned loop (NL) is considered to be optimized if:

(1) Any of the loop transformation optimizations has transformed NL or,
(2) L cannot be vectorized, but NL can be vectorized.

If the loop transformation optimizations do not optimize NL, then NL and the dummy checks are
removed at line-14. Otherwise, actual dynamic checks are inserted to check the non-overlapping of
memory accesses within the loop. Based on the feedback from static optimizations, Scout identifies
the dynamic checks that need to be inserted to check the non-overlapping of memory accesses
within the loop. These dynamic checks are chosen based on the following cases:

Case 1: If L is not vectorizable, but NL can be vectorized, insert dynamic checks for the base
pairs of all possible pairs of the read-write and write-write memory accesses present in the loop
body.

Case 2: If case-1 is not true, for every read memory access R, which is either moved outside of
the loop body or removed from the loop body, insert dynamic checks for the base pairs of R and all
write memory accesses present in the loop body.

Case 3: If case-1 is not true, for every write memory access W, which is either moved outside of
the loop body or removed from the loop body, insert dynamic checks for the base pairs of W and
all other (read/write) memory accesses present in the loop body.
For the identified base pointer pairs, the dynamic checks (Section 3.4) are instrumented (at

line-11). At line-12, the loop-versioning algorithm removes no-alias metadata for pointer pairs
for which the dynamic checks were not added in the previous step.

3.3 Custom Allocator

The allocator maintains a list of segments. A segment is a 4GB (configurable at compile time)
contiguous virtual address space as shown in Figure 3. The starting address of a segment is a 4GB
aligned address. The segment is further divided into fixed-size slots. The size of the slot is 2𝐾 , where
K is fixed for a given segment. The starting address of the slot is aligned to 2𝐾 . Objects of different
sizes are allocated from different segments. A slot is returned to the caller for each allocation from
a segment. The first few slots of a segment are reserved for the metadata. Metadata includes a
bitmap to keep track of free slotsÐthe first eight bytes of a segment store the size of the slots of
that segment. At runtime, Scout identifies an object’s size by reading the first eight bytes value
from the segment.
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3.4 Dynamic Checks for Non-overlapping

The dynamic check for the non-overlapping for a pointer pair (P1, P2) is performed in two steps. In
the first step, Scout computes the size of pointer P1, which involves memory access. In the second
step, Scout checks the non-overlapping of P1 and P2 without memory access.

#define SEGMENT_SIZE (1ULL << 32)

size_t GetObjectSize(void *Ptr) {

Segment *S = (Segment*)((size_t)Ptr & ~(SEGMENT_SIZE-1));

if (S == DATA_SECTION_SEGMENT)

return MAX_VIRTUAL_ADDR;

return S->SlotSize;

}

bool IsNoAlias(void *P1, void *P2, size_t Size) {

return xor((size_t)P1, (size_t)P2) >= Size;

}

Fig. 4. Dynamic check to determine if a pair of pointers do not overlap. The GetObjectSize routine returns

the object size from a pointer address. It uses the alignment property of the segment to read the size of the

slot that is stored on the first eight bytes of a segment. The IsNoAlias routine takes two pointer arguments

and the object size of one of the arguments and returns true if the input pointers point to different objects.

Size computation. The size computation is done using GetObjectSize in Figure 4. Scout com-
putes the address of the segment by resetting the last 32-bits of the address (note that the starting
address of a segment is aligned to 4GB). If the segment address is equal to the segment corre-
sponding to the data section, then the pointer is a global variable. In this case, GetObjectSize
returns the maximum virtual address available on the host platform. Notice that the global variables
are not allocated from the segment, and thus we cannot compute their sizes at runtime. The size
computation logic for stack allocation is discussed in Section 4. The first eight bytes on the segment
store the size of the slot (Section 3.3), represented using the SlotSize field in the pseudo-code. The
size of the slot is the size of the object, which is returned to the caller.

Check for non-overlapping. The IsNoAlias routine in Figure 4 takes two pointers and the size of
one of these pointers as an argument. It returns true if the pointer arguments belong to different
objects. Because of the property of a segment, if two objects are of a different size, they belong to
different segments. In this case, the “xor” of two addresses would be more than or equal to the size
of the segment. Two objects can only overlap if they belong to the same segment; in that case, if the
“xor” of two addresses is equal to or greater than the size of the slot, they cannot overlap (because
of the alignment property of the slots). Notice that in the case of global variables, the object size
is equal to the maximum virtual address on a 64-bit platform (as returned by the GetObjectSize
routine). Due to this, IsNoAlias considers two global variables as may-aliases.

3.5 Profiler

The performance benefits of our approach can only be determined at the time of execution as
they depend on the number of times the optimized loops are executed. One way of obtaining
this information is by executing the program with a profiler. This leads us to the implementation
of a profiler for Scout to maximize the benefits. This profiler identifies loops that improve the
program’s overall performance by executing them.
In the presence of the profiler, Scout works in two phases. In the first phase, the program

is instrumented to collect the execution times of loops using the rdtsc instruction [rdt 2022] by
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executing it on a given set of inputs for both versions of the loop. In the second phase, Scout
uses the generated profile files to identify the transformed loops that improved the program’s
overall performance. These loops are identified based on different thresholds such as 10, 20, and 30,
representing the percentage improvement in the execution time of the loop. Scout then performs
versioning only for these loops.

4 IMPLEMENTATION

We implemented Scout as a part of the LLVM infrastructure (v10.0.0). We have added a pass to
LLVM that follows the approach discussed in Section 3. We have integrated our pass with the
Clang O3 optimization level, and it runs by default with the O3 option. Our pass works at the LLVM
IR level before executing the loop vectorization pass. The pass can be disabled using the option
disable-additional-vectorize. We extended the widely used production allocator JEMALLOC-5.2.1 to
implement our segment-based allocator.

Allocator. JEMALLOC is essentially a buddy allocator, which maintains buckets of different sizes.
For each bucket size, JEMALLOC allocates a large contiguous memory area called extent and divides
the extent into fixed-size slots. These slots are cached and served during the allocation requests.
JEMALLOC uses per-thread caches. The extents are allocated using the mmap API. We leveraged
the caching framework of JEMALLOC and modified the extent allocation logic to use the segments
(discussed in Section 3.3) instead of mmap. For an extent that is used to serve the objects of size 2𝐾 ,
we allocate the extent from a segment that is used to allocate objects of size 2𝐾 . We also ensure
that an extent is not recycled for a different bucket size.

Extending the size to 2𝐾 may create fragmentation issues, especially for large objects. JEMALLOC
uses a bucket-based allocation strategy for small objects; because of that, the additional fragmen-
tation caused by our technique is reduced. We found that the bucket (or class) sizes used by the
JEMALLOC are not always 2𝐾 . The bucket sizes used by JEMALLOC in bytes are 8, 16, 32, 48, 64, 80,
96, 112, 128, 160, and so on. For large objects, our fragmentation issue could be severe. For example,
imagine a scenario where we need to allocate 2GB of memory for an allocation request for the
size ł1GB + 1Bytež. To mitigate this issue, for object size larger than 214, we map physical pages
that are actually needed for the allocation. For example, in the case of ł1GB + 1Bytež, we map the
physical pages corresponding to ł1GB + 4096Bytesž, where 4096 is the page size. The virtual address
reserved for a memory allocation is always 2𝐾 . The average memory overhead of our scheme for
CPU SPEC 2017 benchmarks is 7.47%, as discussed in Section 5.
An alias query can also be made for the stack objects at runtime. In most cases, the compiler

can statically tell whether a stack object does not alias with another object. However, if a stack
address escapes from the static scope, i.e., 1) stored in memory, 2) passed to a routine, or 3) cast
to an integer, the compiler may not identify the stack object uniquely. For these cases, we tried
replacing the stack allocations with malloc and free. However, the overhead of this approach
is very high. To reduce the overheads, we used custom per-thread bump allocators for bucket
sizes (in bytes) 8, 16, 32, ..., and 1024. In this setting, for objects larger than 1024, malloc and free

are used. The bump allocators use segments with slot sizes equal to the bucket sizes of the bump
allocators. Even with the bump allocators, the overheads are high for some benchmarks. To reduce
the overheads further, we switch to a new stack during the main routine. The new stack is allocated
from a segment for which the slot size is 64. If the size of an escaping stack object X is less or equal
to 64, we set the alignment of X to 64. Due to this, at runtime, if the size of X is queried using the
GetObjectSize (see Section 3.4) API, it will correctly return 64. If the object size is more than 64,
we use per-thread bump allocators as discussed before. For multi-threading, Scout inserts a custom
wrapper around calls to pthread_create. In the wrapper code, it allocates a 64-bit aligned stack
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from the segment and uses pthread_attr_setstack to set the new stack for the target thread. We
discuss the overheads of our allocator in detail in Section 5.

Some library functions, such as __ctype_b_loc, __ctype_toupper_loc, etc., return its internal
addresses that may not belong to a valid segment. Scout adds wrappers for these routines. The
wrappers allocate a new object, copy contents from the library’s object to the new object, and
return the allocated address to the caller. If the contents of libraries internal object never change
(e.g., an internal array is used by the library for character classification functions such as isalpha,
isspace, etc. that are not updated post-initialization), the new object is cached and reused during
the subsequent use of the library function.
Embedding non-aliasing information. Scout inserts the non-aliasing information to the loop

body with non-overlapping memory accesses. The compiler uses the non-aliasing information to
check if two memory accesses do not alias statically. This information is incorporated using the
alias.scope and noalias metadata of LLVM [Ali 2022]. It specifies that the two pointers do not
alias each other. This metadata can only be attached to memory instructions like load and store.
Because the array bases corresponding to memory accesses in the loop may not necessarily be

memory instructions, Scout inserts a custom intrinsic [llv 2022] to the program to specify the
no-alias relationships between the base pairs of the pointers. Our custom LLVM intrinsic is known
as llvm.custom.noalias. This intrinsic holds a pair of pointers as arguments. The pair of pointers
present in the custom intrinsic are treated as no-alias with each other. These pointer pairs are
wrapped in the form of LLVM’s metadata nodes. Sample usage of the intrinsic is shown below:
call void @llvm.custom.noalias(metadata DATA_TYPE %a, metadata DATA_TYPE %b)

where metadata represents the LLVM’s metadata node, DATA_TYPE represents the type of the
pointer, %a and %b represent base pointers.
We also modified the static alias analysis algorithm to use our intrinsic. Suppose the original static
alias algorithm cannot find the alias relationship between a pointer pair (P1, P2) at a given point.
In that case, our modified algorithm additionally checks the presence of our custom intrinsic in
the current or an outer scope with bases of P1 and P2 as operands. If it exists, the alias analysis
algorithm treats the pointer pair as no-alias.

Profiler. The profiler implemented in Scout generates two types of profile files in the first phase.
The first file is generated to obtain the time taken statistics for loops when the program is executed,
disabling our approach using the options execute-unoptimized-path and get-time-stats together.
The second file is generated to obtain the time taken statistics for loops when the program is
executed with our approach using the option get-time-stats. The profiler uses the generated profile
files in the second phase to identify loops that benefited the program’s overall performance for
different thresholds. This can be done by specifying the options allow-ben-loops and ben-loop-

threshold together. The user can specify different thresholds (in percentage) using the option
ben-loop-threshold. The default value of the threshold is set to 0%.
Optimizing dynamic checks. Scout implements loop-versioning algorithm (Algorithm 1) for

the innermost loops, which is consistent with the LLVM policy of vectorizing only the innermost
loops. Scout moves the logic to generate the condition for the dynamic check to the preheader
of an outer loop if it is safe to access the base address (for obtaining the size) in the preheader of
the outer loop. To identify if a base pointer is safe to access at point P, Scout statically checks if a
pointer derived from the base pointer is guaranteed to be accessed if the execution reaches P.

5 EVALUATION

We evaluated Scout using 30 Polybench (version 4.2.1) and 16 C and C++ benchmarks available as
a part of Intrate and FPrate suites CPU SPEC 2017 [spe 2022; Bucek et al. 2018] benchmarks. For
Polybench, we used the default input set, and for CPU SPEC 2017, we used the reference input set.
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Table 1. Memory and CPU overhead for CPU SPEC 2017 benchmarks. (MC = Memory overhead of using

custom allocator w.r.t. to native JEMALLOC allocator, MB = Memory overhead of using bump allocator w.r.t. to

native JEMALLOC allocator, MM = Memory overhead of replacing stack alloactions with calls to malloc and

free when the stack objects go out of scope w.r.t. to native JEMALLOC allocator, CC = CPU overhead of using

custom allocator w.r.t. to native JEMALLOC allocator, CB = CPU overhead of using bump allocator w.r.t. to

native JEMALLOC allocator, CM = CPU overhead replacing stack alloactions with calls to malloc and free

when the stack objects go out of scope w.r.t. to native JEMALLOC allocator. The values indicate percentages.)

MO CO

Benchmark MC MB MM CC CB CM

namd_r -2.29 -2.22 -2.09 0 0.51 0.51

parest_r 11.72 11.79 8.06 0.43 1.15 1.51

lbm_r 0.02 0.03 0.02 -0.61 -0.25 -0.25

imagick_r -0.33 -0.32 -0.28 1.4 0.37 29.98

nab_r 17.58 17.6 17.56 1.54 0.73 0.55

perlbench_r 6.53 6.46 5.98 0.33 8.55 594.75

gcc_r 6.15 5.67 3.72 -0.98 1.22 168.86

mcf_r 0.01 0.01 0.03 -2.15 -2.07 -1.61

omnetpp_r 16.72 16.81 16.79 8.36 14.08 212.29

xalancbmk_r 19.97 19.99 19.99 3.05 3.36 189.64

x264_r 0.06 0.08 0.04 -2.36 -1.93 22.46

deepsjeng_r 0.08 0.06 0.08 1.64 2.41 77.89

leela_r 10.02 9.89 10.59 1.31 3.56 67.86

xz_r 0.05 0.06 0.06 0.61 4.43 4.36

povray_r 34.89 36.79 33.18 7.5 11.87 378.53

blender_r 5.2 5.25 5.21 -2.57 1.78 55.82

GM 7.47 7.54 7.03 1.05 3.01 72.75

We compiled all the benchmarks with the O3 optimization level. We performed the experiments
on a 3.60GHz Intel(R) Core(TM) i9-9900K CPU 8 core machine with an x86_64 architecture and
32 GB primary memory, which uses a 64-bit Ubuntu 20.04.2 LTS operating system. We disabled
hyper-threading during our experiments. We considered the arithmetic means of the execution
time for five runs of each benchmark.

5.1 Memory and CPU Time Overhead of the Custom Allocator

Table 1 shows the memory and CPU time overheads of the CPU SPEC 2017 benchmarks. Column-2
and Column-5 show the memory and CPU overhead of the custom allocator with respect to the
native JEMALLOC allocator, respectively. Column-3 and Column-6 show the memory and CPU
overhead of the bump allocator with respect to the native JEMALLOC allocator. Column-4 and
Column-7 show the memory and CPU overheads of replacing stack allocations with calls to malloc
and free when the stack objects go out of scope with respect to the native JEMALLOC allocator.

We used the łMaximum resident set sizež reported by the ł/usr/bin/time -vž command for memory
overheads. The memory overhead of our custom allocator is in the range -2.29% to 34.89% for CPU
SPEC 2017 benchmarks (Table 1, column-2). The memory overhead of povray_r is high, as the
peak memory consumption for this benchmark is only 8.4 MB. The major memory overhead comes
from our custom stack and the page-table pages corresponding to segments. For other benchmarks,
the memory overhead is always less than 20%. The geometric mean of memory overhead is 7.47%.
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Table 2. Memory and CPU time overhead for Polybench benchmarks. We report the benchmarks that resulted

in the absolute CPU overhead of more than 1%. (MD = Memory overhead of custom allocator w.r.t. native

JEMALLOC allocator when compiled using the default size of memory allocations, MA = Memory overhead of

custom allocator w.r.t. native JEMALLOC allocator when the size of the memory allocations is aligned to 2𝐾 ,

CD = CPU overhead of custom allocator w.r.t. native JEMALLOC allocator when compiled using the default

size of memory allocations, CA = CPU overhead of custom allocator w.r.t. native JEMALLOC allocator when

the size of the memory allocations is aligned to 2𝐾 . The values indicate percentages.)

MO CO

Benchmark MD MA CD CA

gemm 0.1 0.4 5.3 0.02

symm -0.04 0.33 2.01 1.22

doitgen 0.26 0.41 -2.55 0.04

jacobi-2d 0.17 0.7 -1.45 0.01

The CPU time overhead of our modified allocator is in the range of -2.57% to 8.36% for CPU SPEC
2017 benchmarks (Table 1, column-5). The percentage change in the execution time of the custom
allocator w.r.t. the native allocator represents the CPU time overhead. In our design, the objects (an
extent in the case of JEMALLOC) from buckets of large sizes cannot be recycled for buckets of smaller
sizes. But this is not true for the unmodified allocator. Because of this, the behavior of the per-thread
caches is different in both runs. Using better allocation tuning can minimize this problem. We plan
to investigate this in the future. Nevertheless, only three out of the 16 benchmarks incur CPU time
overheads above 3%. With the usage of custom per-thread bump allocators (discussed in Section 4),
the CPU overhead for four benchmarks (LoC > 300K), namely, perlbench_r, gcc_r, xalancbmk_r
and parest_r, is either negative or better than our previous implementation. The geometric mean
of CPU time overhead is 1.05%. The CPU overhead lies in the range of -2.07% to 14.08%, when we
use bump allocator instead of custom stack (Table 1, column-6), as discussed in Section 4. However,
the CPU overhead of replacing stack allocations with calls to malloc and free is considerably high
for these benchmarks (Table 1, column-7). To reduce this overhead, we use the bump allocator and
the custom stack as discussed in Section 4.

Table 2 presents the memory and CPU time overheads for the Polybench benchmarks for which
the absolute CPU overhead is more than 1%. The memory overhead of our custom allocator lies in
the range of -0.41% to 0.72% with a geometric mean of 0.13%. The CPU overhead of our custom
allocator lies in the range of -2.55% to 5.3%, with a geometric mean of 0.21%.
In the case of gemm, doitgen and jacobi-2d, our custom allocator either performs better or

worsens the performs as compared to the native allocator. This is due to the fact that our custom
allocator aligns the memory allocations to 2𝐾 . To verify this, we performed another experiment, in
which we align the sizes of the memory allocations to 2𝐾 in the source code itself. We observed
negligible overheads in that case for these three benchmarks. However, we observed a CPU time
overhead of 1.22% (Table 2, column-5) for symm even when the sizes are aligned to 2𝐾 . We found
that this benchmark is doing three large allocations. We believe the overhead is mainly due to the
different allocation strategies used for the large objects. The memory overhead for this benchmark
is -0.04% (Table 2, column-2). If we use 2𝐾 aligned sizes, the memory overhead is 0.33% (Table 2,
column-3).

5.2 Performance Benefits without Profiler

We first discuss the performance benefits obtained by applying Scout on the programs from
Polybench and CPU SPEC 2017 benchmarks in the absence of the profiler. To obtain the performance
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Table 3. Performance benefits for Polybench without profiler. We report six benchmarks that resulted in

performance benefits of more than 3%. (#𝐿𝑎 = Total number of versioned loops by Scout, 𝑃𝑎 = Performance

benefits when compiled with Scout, 𝑃𝑟 = Performance benefits when compiled with the restrict keyword,𝑉𝑐
= Variance of the execution time when compiled with the custom allocator,𝑉𝑠 = Variance of the execution time

when compiled with the custom allocator and Scout. Performance-benefit numbers represent percentages.)

Benchmark #𝑳𝑎 𝑷𝑎 𝑷𝑟 𝑽𝑐 𝑽 𝑠

gesummv 1 49.37 48.42 0.00000001 0.00000001

2mm 2 4.22 4.1 0.00025563 0.00015497

3mm 3 4.28 4.03 0.00017649 0.00009542

bicg 1 51.11 51.01 0.00000001 0.00000001

doitgen 2 10.2 11.11 0.00000132 0.00000334

jacobi-1d 2 11.8 -1.11 0.00000001 0.00000001

benefits, we computed the percentage change in the execution time of the benchmarkwhen compiled
with (optimized) and without (native) our pass, using the custom memory allocator in both cases.

Polybench benchmarks. For Polybench, we report the performance benefits for two different
methods of benchmark compilation. Firstly, we report the performance benefits obtained when
compiled with and without our pass along with the custom allocator. Table 3 shows the num-
ber of versioned loops by Scout (column-2 #𝐿𝑎), and the performance benefits when compiled
with and without Scout for the six benchmarks showing performance benefits of more than 3%
(column-3 𝑃𝑎). Secondly, we report the performance benefits when compiled with and without
the DPOLYBENCH_USE_RESTRICT option of Polybench. This option inserts the restrict keyword
to allow the compiler to assume absence of aliasing for function arguments. Column-4 (𝑃𝑟 ) of
Table 3 shows the performance benefits for the same six benchmarks using the restrict keyword.
Additionally, this table shows the variance of the execution times for the benchmarks’ five runs.
Column-5 shows the variance of the execution times for five runs when the benchmarks are com-
piled with the custom allocator. Column-6 shows the variance of the execution times for five runs
when the benchmarks are compiled with the custom allocator and Scout. The variance is always
less than 0.001.
For Polybench, Scout shows similar performance benefits as that of using restrict keyword

except for two benchmarks, out of 30. We observed that in the case of Scout, non-aliasing relation-
ships in the benefited versioned loops involve the function arguments. Therefore, the triggered
optimizations in both cases were identical, resulting in similar performance benefits.

We observed a substantial performance degradation when jacobi-1d (-1.11%) and adi (-5.16%)
benchmarks were compiled with the restrict keyword. In this case, LLVM failed to preserve
non-aliasing information throughout the transformation passes [res 2022]. The loss of non-aliasing
information resulted in introducing some extra instructions by loop strength reduction and SLP opti-
mizations, slowing down the performance. Therefore, usage of the restrict keyword degraded the
performance of these benchmarks. However, Scout preserved non-aliasing information throughout
the transformation passes with the help of custom intrinsic and no-alias metadata, resulting in
performance benefits of 11.8% and 0.42% for jacobi-1d and adi benchmarks, respectively. Scout
enabled more optimization opportunities (i.e., LICM and SLP) for these benchmarks.
Out of 30 benchmarks, six benchmarks show performance benefits of more than 3% when

compiledwith Scout, as shown in Table 3 (column-3). Out of these six benchmarks, four benchmarks
have high performance benefits of more than 10%. We have listed code snippets from these four
benchmarks in Figure 5, referred to in the discussion below.
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static void kernel_bicg(int m, int n,

double A[], double B[], double q[],

double p[], double r[]) {

...

for (i = 0; i < _PB_N; i++) {

q[i] = SCALAR_VAL(0.0);

for (j = 0; j < _PB_M; j++) {

s[j] = s[j] + r[i] * A[i][j];

q[i] = q[i] + A[i][j] * p[j];

}

}

}

static void kernel_gesummv(int n,

double alpha, double beta,

double A[], double B[],

double tmp[], double x[],

double y[]) {

...

tmp[i] = SCALAR_VAL(0.0);

y[i] = SCALAR_VAL(0.0);

for (j = 0; j < _PB_N; j++) {

tmp[i] = A[i][j] * x[j] + tmp[i];

y[i] = B[i][j] * x[j] + y[i];

}

y[i] = alpha * tmp[i] + beta * y[i];

}

static void kernel_jacobi_1d(int tsteps,

int n, double A[], double B[]) {

...

for (i = 1; i < _PB_N - 1; i++)

B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 1]);

for (i = 1; i < _PB_N - 1; i++)

A[i] = 0.33333 * (B[i-1] + B[i] + B[i + 1]);

}

static void kernel_doitgen(int nr,

int nq, int np, double A[][][],

double C4[][], double sum[]) {

...

sum[p] = SCALAR_VAL(0.0);

for (s = 0; s < _PB_NP; s++)

sum[p] += A[r][q][s] * C4[s][p];

...

}

Fig. 5. Code snippets from the Polybench benchmarks showing performance benefits of more than 10%.

(1) In bicg benchmark, for the loop in function kernel_bicg the compiler could move the read-
/write access to q[i], and r[i] outside the inner loop body.

(2) In gesummv benchmark, for the loop in function kernel_gesummv the compiler could move the
read/write access to tmp[i], and y[i] outside the loop body.

(3) In jacobi-1d benchmark, for the loop in function kernel_jacobi_1d, the compiler could
move A[i-1] and A[i] from the first loop outside the loop body and B[i-1] and B[i] from the
second loop outside the loop body. This optimization further allowed the compiler to vectorize
both loops more efficiently by reducing the number of read memory accesses from 6 to 2 for a
vector width of 4 for each loop.

(4) In doitgen benchmark, for the loop in function kernel_doitgen, the compiler was able to
move sum[p] outside the loop body.

Out of 30 benchmarks, five benchmarks named, floyd-warshall, nussinov, seidal-2d, trisolv
and trmm did not show any improvement as none of the loops were versioned. These benchmarks
consisted of read/write memory accesses with the same base pointers for different array elements.
Alves et al. [Alves et al. 2015] did not report results for the floyd-warshall benchmark. How-
ever, for the other four benchmarks, Alves et al. [Alves et al. 2015] did not report any substantial
improvements.
For the remaining 19 benchmarks, the performance benefits varied from 0% to 3%. The trans-

formations applied by Scout allowed the compiler to trigger optimizations like LICM and GVN.
In some cases, these transformations allowed the compiler to generate a better vectorized code.
The efficient vectorization improved the overall performance of the benchmarks. Based on the
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Table 4. Speedups for Polybench. We report speedups for three benchmarks that resulted in substantial

speedups for the hybrid approach [Alves et al. 2015]. (𝑆ℎ = Speedup with the hybrid approach [Alves et al.

2015], 𝑆𝑟𝑎 = Speedup when compiled with restrict keyword using LLVM-3.6.0, 𝑆𝑠 = Speedup with Scout,

𝑆𝑟𝑏 = Speedup when compiled with restrict keyword using LLVM-10. )

Benchmark 𝑺ℎ 𝑺𝑟𝑎 𝑺𝑠 𝑺𝑟𝑏

gesummv 2.5 1.92 1.98 1.94

bicg 2.7 2.06 2.05 2.05

gramschmidt 1.4 1.01 1.01 1.01

results obtained, we can conclude that for Polybench, the performance benefits obtained using the
restrict keyword and Scout are similar in most cases.
Table 4 shows the results for the three benchmarks that led to a substantial speedup using the

hybrid approach [Alves et al. 2015]. In this table, 𝑆ℎ (column-2) represents the speedups reported
for the hybrid approach, 𝑆𝑟𝑎 (column-3) represents the speedup when we compiled the benchmarks
with LLVM-3.6.0 (used in the experiments performed by Alves et al. [Alves et al. 2015]) using the
restrict keyword, 𝑆𝑠 (column-4) represents the speedups obtained with Scout and 𝑆𝑟𝑏 (column-5)
represents the speedupswhenwe compiled the benchmarkswith LLVM-10 (used in our experiments)
using the restrict keyword.
The hybrid (polyhedral and symbolic range analysis) approach [Alves et al. 2015] resulted in a

substantial speedup for the three benchmarks as shown in Table 4 (column-2). The speedups using
Scout (𝑆𝑠 ) were lesser than the speedups with the hybrid approach (𝑆ℎ). To investigate it further,
we compiled these benchmarks with the LLVM-3.6.0 version (used by Alves et al. [Alves et al. 2015])
using the restrict keyword. The resulted speedups (𝑆𝑟𝑎) were similar to those of Scout and with
the restrict keyword (𝑆𝑟𝑏 ) using LLVM-10 (used by Scout). For all these benchmarks, Scout
could resolve memory dependencies in loops using dynamic checks. In all cases, Scout added
runtime checks for the pointer arguments, and thus, we observed a similar set of optimizations
using the restrict keyword. We expect similar behavior in Alves et al. [Alves et al. 2015] hybrid
approach. Therefore, we attribute the better speedups reported in Alves et al. [Alves et al. 2015] to
the different versions of processors used in both experiments.
We recommend using the hybrid approach [Alves et al. 2015] for Polybench benchmarks. For

these benchmarks, Scout did not find any loop that cannot be versioned using the hybrid approach.
The hybrid analysis can disambiguate pointers that involve read/write memory accesses with the
same base pointers. Scout and the purely dynamic approach [Alves et al. 2015] fail to disambiguate
such memory accesses. Therefore, these techniques fail to benefit the performance in such cases.

Real-world benchmarks such as CPU SPEC 2017 have many loops for which the hybrid approach
cannot be applied. Due to the high cost of the purely dynamic approach proposed by Alves et al.
[Alves et al. 2015], these loops cannot be further optimized. Our fast dynamic checks enabled some
interesting optimizations in CPU SPEC 2017 that we will discuss next.
CPU SPEC 2017 benchmarks. We now discuss the results for CPU SPEC 2017 benchmarks

without using feedback from the profiler. Table 5 shows loop-related statistics and performance
benefits obtained for CPU SPEC 2017 benchmarks. In this table, #𝐿𝑎 represents the total number
of versioned loops by Scout (column-2), #𝐿𝑏 represents the total number of versioned loops that
were not vectorizable before but can be vectorized after the transformations applied by Scout

(column-3), #𝐿𝑒 represents the number of versioned loops executed out of the total versioned loops
by Scout (column-4), 𝑃𝑎 represents the performance benefits obtained without using the profiler
(column-5),𝑉𝑐 represents the variance of the execution time for the five runs when the benchmarks
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Table 5. Performance benefits for CPU SPEC 2017 without profiler. (#𝐿𝑎 = Total number of versioned loops

by Scout, #𝐿𝑏 = Total number of versioned loops that are vectorizable, #𝐿𝑒 = Total number of versioned loops

executed, 𝑃𝑎 = Performance benefits when compiled with Scout, 𝑉𝑐 = Variance of the execution time when

compiled with the custom allocator, 𝑉𝑠 = Variance of the execution time when compiled with the custom

allocator and Scout. Performance-benefit numbers represent percentages.)

Benchmark #𝑳𝑎 #𝑳𝑏 #𝑳𝑒 𝑷𝑎 𝑽𝑐 𝑽 𝑠

namd_r 326 249 9 -0.38 0.7 0.3

parest_r 1020 568 69 -0.3 0.3 0.5

lbm_r 0 0 0 0 0 0

imagick_r 91 24 4 0 0.8 0.3

nab_r 35 15 21 -0.09 0.2 0

perlbench_r 50 18 12 -0.4 1.2 0.7

gcc_r 175 48 35 0.13 1 1.7

mcf_r 0 0 0 0 0 0

omnetpp_r 39 1 6 -1.79 0.2 0.7

xalancbmk_r 286 268 34 0.88 1.3 0.7

x264_r 124 25 32 0 0 0

deepsjeng_r 6 0 6 -0.1 0 0.2

leela_r 1 0 0 0 0 0

xz_r 2 1 0 0 0 0

povray_r 25 7 2 -2.11 0.8 1.6

blender_r 409 89 31 -3.37 0 0.8

are compiled with the custom allocator (column-6), and 𝑉𝑠 represents the variance of the execution
time for the five runs when the benchmarks are compiled with the custom allocator and Scout

(column-7).
To obtain the performance benefits, we compiled all the benchmarks with and without our pass

using the custom allocator. We then computed the percentage change in the execution time of
the benchmarks. Out of 16 benchmarks, six benchmarks named lbm_r, imagick_r, mcf_r, x264_r,
leela_r and xz_r reported no improvement in the execution time. For benchmarks lbm_r and
mcf_r, none of the loops were versioned by Scout. For benchmarks leela_r and xz_r, some loops
were versioned, but those loops were never executed.

The percentage change in the CPU time for the rest of the benchmarks lie in the range of -3.37%
(blender_r) to 0.88% (xalancbmk_r), as shown in Table 5, column-5. Except for the xalancbmk-
_r and gcc_r benchmarks, the other benchmarks incurred negative or no improvement. Scout
versioned a significant number of loops for these benchmarks; however, the following reasons led
to such performance degradation:

(1) The code snippet containing the versioned loop never executes (e.g., in the case of blender_r
only 7% of the versioned loops were executed).

(2) The dynamic checks never hold. In such a case, the original version of the loop executes, and
the dynamic checks ends up adding an extra overhead (e.g., we found four such loops in case of
gcc_r and five loops in case of x264_r).

(3) The overhead of dynamic checks is more than the benefits of the enabled optimizations.

Our observations showed that even though most of the benchmarks did not show a substantial
performance improvement, these benchmarks showed the potential to vectorize more loops over the
existing implementation. The range of additional vectorized loops lies between 2% to 93% w.r.t. the
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Table 6. Performance benefits for CPU SPEC 2017 with profiler. (#𝐿𝑝 = Total number of versioned loops based

on the profiler’s feedback, #𝐿𝑏 = Total number of versioned loops that are vectorizable, 𝑃𝑎 = Performance

benefits when compiled with Scout, 𝜏 = Threshold for improvement in the execution time of the loop, 𝑆𝑟𝑒𝑐 =

Scout recommended (Y = Yes, N = No). Performance-benefit numbers represent percentages.)

𝝉 = 0 𝝉 = 10 𝝉 = 20 𝝉 = 30

Benchmark #𝑳𝑝 #𝑳𝑏 𝑷𝑎 #𝑳𝑝 #𝑳𝑏 𝑷𝑎 #𝑳𝑝 #𝑳𝑏 𝑷𝑎 #𝑳𝑝 #𝑳𝑏 𝑷𝑎 𝑺𝑟𝑒𝑐

namd_r 9 1 0.51 5 1 0.13 0 0 0 0 0 0 Y

parest_r 24 17 0.31 18 13 0.73 15 12 0.43 12 10 0.31 N

lbm_r 0 0 0 0 0 0 0 0 0 0 0 0 N

imagick_r 1 0 0.23 1 0 0.23 1 0 0.23 1 0 0.23 N

nab_r 12 9 0.27 11 9 0 11 9 0 8 7 0 N

perlbench_r 0 0 0 0 0 0 0 0 0 0 0 0 N

gcc_r 5 4 0.62 2 2 0.73 2 2 0.73 0 0 0 Y

mcf_r 0 0 0 0 0 0 0 0 0 0 0 0 N

omnetpp_r 3 0 0.5 1 0 0.25 0 0 0 0 0 0 N

xalancbmk_r 10 9 1.32 4 4 1.47 2 2 0.9 2 2 0.9 N

x264_r 19 1 0.89 12 1 0.45 9 1 0.34 3 1 0.56 Y

deepsjeng_r 2 0 0.49 0 0 0 0 0 0 0 0 0 N

leela_r 0 0 0 0 0 0 0 0 0 0 0 0 N

xz_r 0 0 0 0 0 0 0 0 0 0 0 0 N

povray_r 0 0 0 0 0 0 0 0 0 0 0 0 N

blender_r 11 0 0.52 3 0 0.31 0 0 0 0 0 0 Y

total versioned loop by Scout. Out of 16 benchmarks, for 11 benchmarks, this percentage is more
than 10%. For xalancbmk_r, namd_r and parset_r benchmarks 93%, 76% and 55% of the additional
versioned loops are vectorizable. These statistics showed that the compiler could vectorize more
loops, but the existing approaches failed on such loops.

The purely dynamic approach in Alves et al. [Alves et al. 2015] slowed down the allocation-heavy
401.bzip2 benchmark from SPEC CPU 2006 by 29%. On the other hand, the maximum slow down
with Scout is 10.15% for the omnetpp_r benchmark (including allocator overhead) and 3.37% for
the blender_r benchmark (excluding allocator overhead), as shown in Tables 1 (column-5) and 5
(column-5). Moreover, it would be unfair to compare these results directly because unlike the purely
dynamic approach, Scout takes feedback from the static optimizations to reduce the number of
dynamic checks and decide which loops can be benefited from versioning. Alves et al. [Alves et al.
2015] did not report results for other SPEC CPU 2006 benchmarks (apart from 401.bzip2).

5.3 Performance Benefits with Profiler

We estimated performance benefits of the CPU SPEC 2017 benchmarks based on the profiler’s
feedback. To obtain the performance benefits with the profiler, we computed the percentage
change in the execution time of the benchmark when compiled with only those versioned loops
that showed some improvement in the execution time w.r.t. the native compilation. Firstly, the
benchmarks were compiled and executed with the optimized (i.e., versioned loops) and then with
the unoptimized versions of the loops to obtain the profile files. Scout identified loops that showed
some improvement using the generated profile files. The different thresholds for performance
improvement determined the benefited loops.
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Table 7. Variance of the execution time for five runs of the CPU SPEC 2017 benchmarks. 𝜏 = Threshold for

improvement in the execution time of the loop, 𝑉𝑐 = Variance of the execution time when compiled with the

custom allocator, 𝑉𝑠 = Variance of the execution time when compiled with the custom allocator and Scout.)

𝝉 = 0 𝝉 = 10 𝝉 = 20 𝝉 = 30

Benchmark 𝑽𝑐 𝑽 𝑠 𝑽 𝑠 𝑽 𝑠 𝑽 𝑠

namd_r 0.7 0 0.8 0.7 0.7

parest_r 0.3 0.5 0.8 0.8 0.3

lbm_r 0 0 0 0 0

imagick_r 0.8 0.7 0.7 0.7 0.7

nab_r 0.2 0.2 0.7 0.7 0.7

perlbench_r 1.2 1.2 1.2 1.2 1.2

gcc_r 1 1 0.2 0.2 1

mcf_r 0 0 0 0 0

omnetpp_r 0.2 0.7 0.2 0.2 0.2

xalancbmk_r 1.3 1.3 0.3 0.7 0.7

x264_r 0 0.3 0.2 0.3 0

deepsjeng_r 0 0 0 0 0

leela_r 0 0 0 0 0

xz_r 0 0 0 0 0

povray_r 0.8 0.8 0.8 0.8 0.8

blender_r 0 0 0.3 0 0

Table 6 shows the loop-related statistics and performance benefits for thresholds (𝜏 ) 0%, 10%, 20%
and 30%. In this table, #𝐿𝑝 represents the total number of versioned loops based on feedback from
the profiler, #𝐿𝑏 represents the number of versioned loops not vectorizable before but vectorized
after the transformations applied by Scout, 𝑃𝑎 represents the performance benefits obtained
using feedback from the profiler and 𝑆𝑟𝑒𝑐 represents whether we recommend using Scout for
the corresponding benchmark (Y represents we recommend using Scout and N represents we
do not recommend using Scout). We recommend using Scout for those benchmarks where the
CPU time overhead of the custom allocator (Table 1, column-5) is lesser than the performance
benefits obtained with the profiler for at least one of the thresholds. Table 7 shows the variance
of the execution time for five runs of the benchmarks for different thresholds. 𝑉𝑐 represents the
variance when compiled with the custom allocator, 𝑉𝑠 represents the variance when compiled with
the custom allocator, and Scout.

For the benchmark xalancbmk_r, out of 286 versioned loops by Scout, only ten loops resulted
in some performance improvement based on the statistics shown in Table 6 for threshold 0%.
After discarding non-benefited loops, the performance benefits increased to 1.32% from 0.88% for
threshold 0%. The performance further increased to 1.47% when the four loops with an improvement
of more than 10% were versioned. However, the performance drops to 0.9% for the 20%, and 30%
threshold as Scout only versioned two loops based on the feedback. Out of the ten loops that
benefited, the compiler vectorized nine loops based on the transformations applied by Scout. This
number was further reduced to four for threshold 10% and two for thresholds 20% and 30%, affecting
the benchmark’s performance. Even though the xalancbmk_r benchmark shows the maximum
performance benefits, we do not recommend using Scout for this benchmark as the allocator’s
overhead for this benchmark is higher (3.05%, Table 1, column-5).
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For benchmark x264_r, out of 124 versioned loops by Scout, only 19 loops benefited based on
the statistics obtained by the profiler. This benchmark led to a performance improvement of 0.89%
when non-benefited loops were not versioned. For this benchmark, the performance benefits vary
with the threshold increase. Moreover, the versioning of non-benefited loops due to the absence of
the profiler hampered the performance of this benchmark. The obtained results showed that this
benchmark could lead to a performance improvement of around 0.89% using the feedback. For this
benchmark, the allocator is also showing an improvement of 2.36% (Table 1, column-5). Therefore,
we recommend using Scout for this benchmark.

The performance benefits for the gcc_r benchmark increased from 0.13% to 0.62% when the
benchmark was compiled with versioning only those loops that showed some improvement. There
were only five such loops out of 175 loops versioned by Scout. The performance benefits increased
to 0.73% for thresholds 10% and 20%. For the threshold 30%, none of the loops got benefited. We
recommend using Scout for this benchmark as the maximum performance benefit is 0.73%, and
the allocator shows an improvement of 0.98% (Table 1, column-5).

For some benchmarks, the performance benefits decreased with the increase in threshold, such as
namd_r, omnetpp_r and deepsjeng_r as the number of versioned loops reduces to 0. However, for
benchmarks such as parest_r, gcc_r and xalancbmk_r, the performance improved for threshold
10% compared to threshold 0%. The possible reason behind this could be that the instrumentation
of rdtsc instruction for collecting timing statistics during the profile phase changed the behavior of
some loops. The threshold 0% setup also includes loops that show minor improvements over the un-
optimized version during the profile phase. However, the benchmarks showed higher performance
benefits when such loops were not versioned for the threshold 10%.

We observed the benchmarks were benefited from the profiler because it helped filter out some
non-benefited loops. The user can choose the threshold according to their requirements to obtain
maximum performance benefits using Scout. We recommend using Scout for four of the CPU
SPEC 2017 benchmarks named, namd_r, gcc_r, x264_r, and blender_r. We conclude that with the
help of the profiler, Scout can identify the loops more effectively that were ultimately benefited
and version only those loops to get maximum performance benefits.

5.4 Code Patterns Optimized using Scout for CPU SPEC 2017

Figure 6 shows some of code snippets from CPU SPEC 2017 benchmarks for which loop bounds
are not loop invariants. These loops were executed during runtime and yielded more than 20%
improvement. However, Scout could optimize many such loops during compile time. In most cases,
we found that structure fields or class elements are accessed in the loop condition, involvingmemory
access. This looks like a common coding pattern that exists in real-world workloads. The compiler
could not compute the static bounds of these loops due to unresolved memory dependencies. Note
that none of the existing techniques can be applied to this loop except the purely dynamic approach
proposed in Alves et al. [Alves et al. 2015] that would require 𝑂 (𝑙𝑜𝑔 𝑛) checks.

6 RELATED WORK

Many static alias analyses have been proposed in the past [Andersen and Lee 2005; Cooper and
Kennedy 1989; Hardekopf and Lin 2009, 2011; Hind et al. 1999; Lattner et al. 2007; Pearce et al. 2007;
Steensgaard 1996]. These analyses differ in properties such as field-sensitivity, inter/intra-procedural
nature, flow-sensitivity, and context-sensitivity. Inter-procedural static alias analysis is more precise
than intra-procedural analysis. However, inter-procedural analyses are not scalable. Some attempts
have been made to develop precise intra-procedural analysis [Hardekopf and Lin 2007; Zheng and
Rugina 2008]. However, the intra-procedural alias analysis fails to provide deterministic information
missing out on optimization opportunities.
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//544.nab_r mme34()

//line 1978

for (i = -1; i < prm->Natom;

i++) {

iexw[eoff + i] = -1;

}

//Improvement: 60%

//544.nab_r nbond()

//line 866

for (i = -1; i < prm->Natom;

i++) {

iexw[i] = -1;

}

//Improvement: 43%

//544.nab_r set_belly_mask()

//line 1980

for( i=0; i<prm->Natom; i++ )

prm->N14pairs[i] = 0;

//Improvement: 38%

//544.nab_r readparm()

//line 1494

for (i = 0; i < prm->Natom;

i++)

prm->N14pairs[i] = 0;

//Improvement: 37%

//544.nab_r mme_init()

//line 1292

for (i = 0; i < prm->Natom;

i++) {

pairlist[i] = NULL;

lpairs[i] = upairs[i] = 0;

}

//Improvement: 33%

//544.nab_r mme_init()

//line 1224

for (i = 0; i < prm->Natom;

i++) {

pairlist2np[i] = NULL;

lpairs2np[i]

= upairs2np[i] = 0;

}

//Improvement: 32%

//523.xalancbmk_r expand()

//line 620

//fElemCount is a

//class member.

for (unsigned int index = 0;

index < fElemCount;

index++)

newList[index]

= fRanges[index];

//Improvement: 51%

//525.x264_r

//FmoGenerateMb-

//ToSliceGroupMap()

//line 149

for (i=0; i<p_Vid->

PicSizeInMbs; i++) {

MbToSliceGroupMap++ =

*MapUnitTo-

SliceGroupMap++;

}

//Improvement: 52%

//510.parest_r

//get_dof_indices()

//line 2043

for (unsigned int i=0; i<

accessor.get_fe()

.dofs_per_cell;

++i, ++cache)

dof_indices[i] = *cache;

//Improvement: 77%

//502.gcc_r

//df_worklist_dataflow()

//line 1023

for (i = 0; i < cfun->cfg->

x_last_basic_block; i++)

bbindex_to_postorder[i] =

cfun->cfg

->x_last_basic_block;

//Improvement: 29%

//502.gcc_r init_graph()

//line 1116

for (j = 0; j < graph->size;

j++) {

graph->rep[j] = j;

graph->pe_rep[j] = -1;

graph->indirect_cycles[j]

= -1;

}

//Improvement: 22%

//538.imagick_r

//ParseGeometry()

//line 967

while (isspace((int)

((unsigned char) *p)) != 0)

p++;

//Improvement: 51%

Fig. 6. Code snippets from the CPU SPEC 2017 benchmarks that show substantialimprovement.

Our work belongs to another class of approaches that disambiguate pointers at runtime to
improve the precision of alias analysis. Alves et al. [Alves et al. 2015] propose a technique based
on code-versioning and dynamic disambiguation of pointers. To disambiguate pointer pairs with
different bases at runtime, it uses red-black tree lookups to find the starting addresses of objects
referred to by the pointers. If the starting addresses are different, they point to different objects

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 153. Publication date: October 2022.



153:22 Khushboo Chitre, Piyus Kedia, and Rahul Purandare

and thus cannot be aliases. The overhead of this scheme is 𝑂 (𝑙𝑜𝑔 𝑛), which is substantially high.
To reduce the overheadof dynamic checks, they also use polyhedral access range analysis and
symbolic range analysis to place 𝑂 (1) checks for loops obey certain constraints. On the contrary,
our tool can check non-aliasing of pointer pairs with different bases in just one memory access
irrespective of the program point.

Other approaches [Chen et al. 2004; Da Silva and Steffan 2006; Fernández and Espasa 2002; Huang
et al. 1994; Lin et al. 2003] to dynamic alias analysis are based on speculative execution. The key idea
of these works is to generate efficient code assuming the non-aliasing of pointers. The generated
code also contains dynamic checks for the assumptions that are made for the optimizations. If
the assumptions are not true during runtime, the execution is transferred to a recovery code that
ensures correct behavior. These works were designed when the memory latency was high. Due to
this, in these works, the overheads of dynamic checks are significantly low compared to memory
access, and checks are present even inside loops. However, these assumptions might not hold for
modern processors with large caches and multiple layers of cache hierarchies. These schemes
work well when the frequency of execution of recovery code is low, and the overheads of dynamic
checks are not high. Thus, most of these works use a profiler to identify code regions in which the
assumptions for non-aliasing mostly hold. We also use a profiler to remove dynamic checks for
loops that do not show improvement at runtime.

In intra-procedural alias analysis, local static information is not available to the target function. To
eliminate the precision loss due to function calls, Hugo et al. [Sperle Campos et al. 2016] implement
code-versioning at the granularity of functions. The cloned function is optimized, assuming non-
overlapping of function arguments. The optimized version is called if the function arguments
are statically known to not alias at a call site. Otherwise, dynamic checks for disambiguation of
function arguments are added, and depending on the result, the optimized or original version of the
target function is called. This technique can be integrated into our tool to enable other optimization
opportunities.
Archipelago[Lvin et al. 2008] allocates each object on a unique page. In the presence of this

allocator, it is possible to implement fast dynamic checks for pointer disambiguation. However,
the memory overhead of this allocator could be high because of the fragmentation issue for small
objects.

7 CONCLUSION

We presented a novel allocator design that enabled runtime disambiguation of two pointers using a
single memory access. Despite the loop-versioning algorithm based on scalar evolution analysis,
LLVM cannot vectorize many loops that can be vectorized using our technique. In addition to
loop vectorization (the potential benefits are generally high), our lightweight dynamic checks
enable relatively simpler optimizations, e.g., loop-invariant code motion, dead store elimination,
and load elimination. Unlike vectorization, LLVM does not attempt these optimizations using the
existing loop-versioning mechanisms. Our technique uses the feedback from static optimizations to
identify benefited loops and the minimum number of dynamic checks required to optimize the loop.
Our allocator does not add significant CPU time overheads for many benchmarks. The memory
overhead of our allocator is also reasonable.
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DATA AVAILABILITY STATEMENT

The source code repository [Sco 2022a,b] contains Scout (LLVM), custom allocator (jemalloc2k),
and the build scripts and is available at URLs https://doi.org/10.5281/zenodo.7089827 and https:
//github.com/khushboochitre/Scout-Artifact.git.
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