
Demand paging in xv6

The goal of this assignment to understand the paging subsystem of an op-
erating system. The first component you need to implement is demand paging.
Demand paging lazily maps a physical page corresponding to a virtual page
during the time of dereferencing. In addition to demand paging, you also need
to implement swapping. If the system runs out of physical memory, then the
swapping subsystem reuse an already used physical page by saving its contents
to secondary storage (e.g., disk).

1 Environment

For this assignment, you need to install qemu.
Run, sudo apt-get install qemu

Please clone the assignment repo from https://github.com/Systems-IIITD/

xv6-paging.git.
Run make qemu.
It will boot the xv6 OS in qemu emulator. You can also redirect the output to
a file using, make qemu > log.txt.
The default process is the shell. Type memtest1 to run memtest1.
Currently, it panics because the page fault handler is not implemented. After,
you have correctly implemented everything, memtest1 and memtest2 should run
normally.

2 Implementation

To implement these features: please look at the disk and memory management
APIs.

2.1 Memory Management

Read “Page Tables” chapter from the xv6 book. All physical pages are mapped
in the kernel virtual address (KVA) space. KVA start from the address KERN-
BASE. The physical pages are mapped in the kernel at the location KERN-
BASE. To get the KVA of a physical address x, we simply need to add KERN-
BASE to x. Important functions to look at:

1

https://github.com/Systems-IIITD/xv6-paging.git
https://github.com/Systems-IIITD/xv6-paging.git


� kalloc() : Allocate a physical page. kalloc return KVA; subtract the
KERNBASE to get the physical page.

� kfree() : Free a physical page (accept KVA).

� walkpgdir() : Return the address of the page table entry corresponding to
a virtual address in the input page table (pgdir).

� mappages(): Map physical page corresponding to a virtual page in the
page table (pgdir) with the given permissions.

� allocuvm(): Allocate and map physical pages for virtual addresses between
oldsz to newsz.

2.2 Disk management

Read “File System” chapter from the xv6 book. The disk layer reads and writes
blocks on an IDE hard drive. On top of the device interface, a buffer cache
layer exists, that caches the disk data in memory for faster access. All the
disk accesses are done through buffer cache APIs. The IDE hard drive reads/
write data on the sector granularity, which is 512 bytes long. The buffer cache
block size is same as the disk sector size. The first block (block 0) on disk is
boot sector. The second block is superblock. xv6 block allocator maintains
a free bitmap on disk, with one bit per block. A zero bit indicates that the
corresponding block is free; a one bit indicates that it is in use. The block
number of the first bitmap block is stored in the superblock bmapstart field.

You can look at the “Block allocator” section in the xv6-book for a detailed
discussion.

The important functions to look at:

� balloc() : Allocate a free disk block.

� bfree() : Free a disk block.

� readsb() : Read super block.

� bget() : Lookup a block in the buffer cache. If not found allocate a buffer
and returned the locked buffer.

� bread() : If not found in buffer cache read a block from disk.

� brelse() : Release a locked buffer. bget()/bread() returns a locked buffer,
which must be released after use.

� bwrite() : Write a block to the disk.

� log write() : Safely writes a block to the disk. Must preceded/succeeded
with begin op()/end op().

� iderw() : Read/write blocks to disk device.

2



2.3 Swapping

Implement system call swap (sys swap). sys swap takes a user virtual address
of the current process to swap. For swapping:

� Implement balloc page(). balloc page() allocates 4 KB consecutive disk
space and returns the address of first disk block.

� Save the content of the virtual page to a disk page. It is okay for this
assignment to use buffer cache APIs to read/write swapped blocks.

� Mark the page-table entry corresponding to the swapped virtual page as
invalid.

� Save the block id of the swapped location in the page-table entry itself.
Reserve some bits in the page-table entry to identify a swapped page.

� Invalidate the TLB corresponding to the swapped virtual page.

� Free the physical page.

For this part, you may need to implement the following routines: sys swap,
balloc page, balloc free, write page to disk, read page from disk, swap page from pte.
Please feel free to add new routines or change interfaces of these routines.

2.4 Demand paging

malloc() uses sbrk system call to allocate virtual pages. Currently, sbrk does
not map any physical page to the allocated virtual pages. Application derefer-
ences to a virtual page for the first time triggers a page fault. In the page fault
handler, you need to allocate a physical page and map it to the corresponding
faulty address. If you are unable to allocate a physical page, then you must have
to swap a virtual page in the current process address space. For this assignment,
you need to implement the following policy for finding a victim for replacement:

� Find a virtual page whose access bit is not set.

� If you are unable to find a virtual page in the above step, randomly reset
the access bit of the 10% of total allocated pages. It is also okay if you
reset the access bit of only one virtual page.

� Repeat the first step.

If the faulty virtual page was previously swapped then you have to restore the
contents of the swapped page and free the swapped disk blocks.

For this part, you may need to implement the following routines: map address,
swap page, select a victim, clearaccessbit, getswappedblk. Please feel free to
add new routines or change interfaces of these routines.

3



2.5 Fork

Currently, fork system call copies entire data from the parent process. If the
memory gets exhausted during the copying, then swap pages from the parent
process to make sure that copy succeeds. You should look at: fork, copyuvm
routines.

2.6 Process termination

Free all the swap blocks when the process exits. You should look at: freevm,
deallocuvm.

2.7 Bstat

You should implement the bstat system call which returns the global count of
swapped pages. Please adjust the numallocblocks properly, when the swapped
blocks are allocated and deallocated.

2.8 Synchronization

Look at the implementation of acquire, release, acquiresleep and releasesleep

in spinlock.c and sleeplock.c. You can use these APIs directly for synchro-
nization. If you want to understand how these APIs works internally, read
chapter-4 from the xv6 book.

3 Test cases

memtest1 and memtest2 are two test cases. memtest1 tests the demand paging
functionality and memtest2 tests the fork and swap system call. memtest3 does
bstat system call to collect the swap space usage. Ideally, memtest3 should
return zero after the completion of memtest1 and memtest2. Don’t start directly
with memtest1. First, write small test cases (either add a new test case or change
memtest1). E.g., write a test case that malloc one virtual page and dereference
it. When you able to get it working, add more functionality, e.g., the swap
system call. Write small tests to test these functionalities.

3.1 Design documentation

Answer the following questions in your design documentation. If we find that
you have provided any misleading fact in your submission, you may get a neg-
ative mark. Answer all questions.

� Are you able to run memtest1 without any error?

� Are you able to run memtest2 without any error?

4



� Run memtest3 after memtest1 and memtest2. What is the output of
memtest3?

� When do you update numallocblocks?

� What is the structure of your page table entry that stores the demand
paging/swapping information?

� Does your scheme has a limitation on maximum swap size? If yes, what
is it?

� How do you ensure synchronization in balloc page and balloc free?

� Write the pseudocode code of your select a victim implementation.

� Can concurrent calls to sys swap swap the same physical page? If yes,
how do you ensure synchronization among them?

� If you are not able to run memtest1 without any error, write the summary
of your implementation. If you can run memtest1, then you don’t have to
answer this question.

3.2 How to submit.

Submit the entire xv6-paging folder to the submission link. Upload your design
document at the given link on Backpack.

5


	Environment
	Implementation
	Memory Management
	Disk management
	Swapping
	Demand paging
	Fork
	Process termination
	Bstat
	Synchronization

	Test cases
	Design documentation
	How to submit.


