
Shell

1 Shell

Implement a basic shell. Your shell implementation should not execute the
existing shell program. You have to build these functionalities by yourself (using
fork, exec, wait, etc., as discussed in the class). By default, the shell program
waits for user input from the stdin. After the user enters some command, the
shell program parses the input to interpret I/O redirection, pipe, etc. After
interpreting the command as described below, the shell program again waits for
user input until the user enters the exit command. Below is the list of features
you need to implement.

Syntax Meaning
command execute the command and wait for the command to

finish, print error message if the command is invalid
command > filename redirect stdout to file “filename”. If the file does not

exist create one, otherwise, overwrite the existing file
command >> filename If the filename already exists append the stdout out-

put, otherwise, create a new file
1>filename redirect stdout to filename
2>filename redirect stderr to filename

2>&1 redirect stderr to stdout
command < filename use file descriptor 0 (stdin) for filename. If command

tries to read from stdin, effectively it will read from
filename.

| pipe command (as discussed in class)
exit exit from the shell program

2 Implementation

Implement everything in the “shell.c” file. Your program should be able to
handle the nested commands, e.g.,

‘‘/bin/ls | /bin/sort | /bin/uniq | /usr/bin/wc -l 2>&1 1>output.txt’’

1



3 References

Read the man page of pipe, fork, read, write, open, close, dup, exec, and
wait for more details about these system calls.

4 Design documentation

You also have to submit design documentation along with your implementation.
In your design documentation, explain which part of your shell program will get
invoked when you execute “/bin/ls | /bin/sort | /bin/uniq” command. If you
are using a Linux distribution where ls, sort, and uniq commands are not
present in the /bin folder, then find the correct paths and use them to execute
the command. Write the pseudocode of all components of your program that
will execute during the execution of the above program. The pseudocode should
be a high-level description of your actual submission. Your assignment will not
be graded if your design documentation is incomplete, or your pseudocode is
different from your actual implementation.

5 How to submit.

To be done individually. Submit a zip folder that contains two files: “shell.c”
and design documentation (in pdf format). Please make sure that your imple-
mentation is not printing any debug messages before submitting the final code.
The submission link is on backpack.

2


	Shell
	Implementation
	References
	Design documentation
	How to submit.

