Memory allocator

The goal of this assignment is to implement a memory allocator (SimpleMM)
for C applications. SimpleMM provides interfaces for dynamic memory allocation
and deallocation.

1 OS memory interfaces

SimpleMM uses alloc_from ram and free ram APIs for allocation and dealloca-
tion of RAM space from OS. alloc_from_ram can be used to allocate memory of
size multiple of 4096 bytes. The memory address returned by alloc_from_ram
is always aligned to 4096 (i.e., the address is divisible by 4096). A memory area
of size 4096, whose starting address is aligned to 4096, is called a page. In other
words, alloc_from ram can be used to allocate contiguous page(s). free_ram
API can be used to deallocate memory returned by alloc_from_ram.

2 Allocation

mymalloc is the memory allocation API of SimpleMM, which is similar to malloc
APT of standard C library. mymalloc takes the size of the buffer as input and
returns a memory buffer of the input size. SimpleMM maintains multiple lists.
Each list contains free objects that are available for allocation. All objects in
a given list are of the same size. A list of free objects is also called a bucket.
SimpleMM maintains nine buckets that contain objects of size 16, 32, 64, 128,
256, 512, 1024, 2048, and 4080 bytes, respectively. Bucket size is the size of
memory objects in a given bucket.

If the allocation size is less than or equal to 4080 bytes, then the allocation
size is rounded up to the nearest bucket size, and the allocation takes place from
the corresponding bucket.

If the bucket is empty, then mymalloc allocates a page (using alloc_from_ram
APT). The first 16 bytes on the allocated page is reserved for metadata; the rest
of the page is called data area. All objects on a page are used by the same
bucket. Page metadata contains the bucket size and the number of available
bytes on a given page (i.e., the number of bytes on the page that the available for
allocation). mymalloc divides the data area on the page into memory objects of
bucket size and inserts them to the bucket. After this step, mymalloc removes



an object from the bucket, updates the available size in the page metadata, and
returns the object to the caller.

If the bucket is not empty, then mymalloc removes an object, updates page
metadata corresponding to the page of the object, and returns the object (similar
to the last step in the previous case).

If the allocation size is larger than 4080, then mymalloc always uses alloc_from_ram
to serve the memory request. mymalloc also keeps page metadata for large al-
locations (needed during deallocation). The input allocation size is adjusted
to also accommodate page metadata at the beginning of the page returned by
alloc_from ram (similar to small allocations). Finally, mymalloc returns the
memory address just after the page metadata after updating the page meta-
data.

3 Deallocation

SimpleMM memory deallocation API is myfree. myfree takes a memory object
(allocated using mymalloc) as input. myfree fetches the page metadata, which
is stored on the top of the current page (page corresponding to the input object).
If the current page belongs to the large allocation (>4080 bytes), then myfree
obtains the allocation size from the page metadata and immediately frees the
page using free_ram API. Otherwise, myfree updates the available size on the
page and inserts the object to the corresponding bucket (list). If all the bytes
on the current page are available, then myfree removes all the objects on the
current page from the corresponding bucket and frees the page using free_ram
APL

4 Implementation

You are to implement the mymalloc and myfree APIs, as discussed in Section 2]
and Section [8] You are not supposed to use the standard memory allocator
malloc and free anywhere in your implementation. You have to implement
your own linked list yourself. The third-party linked list libraries are not allowed.
You can use alloc_from ram and free_ram APIs, which are provided in the
assignment repository. You need to implement everything in ¢ ‘memory.c’’.

5 Environment

For this assignment, you need to clone the assignment repo from https://
github.com/Systems-IIITD/SimpleMM.

SimpleMM contains a test case randomalloc. c and the memory allocator(memory.c).
You are to implement mymalloc and myfree APIs in memory.c. memory.c
contains implementations of alloc_from ram and free_ram APIs. To run the
test case, run ¢ ‘make run’’. “make” command builds the test case and the
SimpleMM library. You are not supposed to change the test case.


https://github.com/Systems-IIITD/SimpleMM
https://github.com/Systems-IIITD/SimpleMM

5.1 Design documentation

You also have to submit design documentation along with your implementation;
otherwise, the assignment will not be graded. Answer the following questions
in your design documentation.

e What is your page metadata structure?

e How do you find that an object is large or small during myfree?

e When do you free a page allocated for objects in buckets (lists)?

e How do you find the page metadata of the input object during myfree?

e Paste your code corresponding to the removal of all objects on the page
from the bucket (list), when a page is freed.

4

e Dump the output of the ¢ ‘make test’’.

5.2 How to submit.

To be done individually. Submit a zip folder that contains two files: “memory.c”
and design documentation (in pdf format). The submission link is on backpack.



	OS memory interfaces
	Allocation
	Deallocation
	Implementation
	Environment
	Design documentation
	How to submit.


