
Homework 3: Interrupt handlers

Answer the following questions.

1.
int schedule_disabled = 0; // global

struct list *ready_list; // global

struct thread *cur_thread; // global

void schedule1 () {

if (schedule_disabled) {

return;

}

schedule_disabled = 1;

push_list(ready_list, cur_thread);

schedule();

schedule_disabled = 0;

}

Consider the above implementation of the schedule1 routine. Is it possible
that the ready list can go to an inconsistent state? Does this prevent
deadlock? Justify your answer. [0.5]

2. Suppose we don’t have hardware support for disabling interrupts (e.g.,
cli, EFLAGS, etc.). How do you emulate the same behavior using the
software? [0.5]

A global variable interrupt disabled can be used to store the status of
the interrupt. Therads can set this variable to disable the interrupt. The
interrupt handlers can simply return if this flag is set. We cad add the
following instructions at the start of every interrupt handler.

3.
bar:

1. push %ebp

2. mov %esp, %ebp

3. mov $100, %eax

4. mov %ebp, %esp

5. pop %ebp

6. ret

1

foo:

1. push %ebp

2. mov %esp, %ebp

3. mov $101, %eax

4. mov %ebp, %esp

5. pop %ebp

6. ret

interrupt_handler:

1. push %eax

2. push %edx

3. push %ecx

4. call schedule1

5. pop %ecx

6. pop %edx

7. pop %eax

8. iret

Let us consider that we have two threads foo and bar. bar is the cur-
rent thread, and foo is the only thread in the ready list. foo was pre-
empted earlier after instruction-2 (in foo). bar had received an inter-
rupt after instruction-3 (in bar) due to which interrupt handler was
called. interrupt handler was interrupted again after instruction-2 (in
interrupt handler), and interrupt handler was called again. Right
not the CPU is executing the first instruction of the interrupt handler (af-
ter receiving the second interrupt). Let us assume that the CPU will not
receive an interrupt until one of the routines bar or foo starts executing
again. Under this assumption, the context switch routine will be called
twice before executing foo or bar. You can find the implementation of
schedule1, schedule, and context switch in the lecture slides.

� What will be the call-stack at the start of the context switch when
it is called the first time. [0.25]

� What will be the call-stack at the end of the context switch when
it is called the first time. [0.25]

� What will be the call-stack at the start of the context switch when
it is called the second time. [0.25]

� What will be the call-stack at the end of the context switch when
it is called the second time. [0.25]

By call-stack, we mean the stack of return addresses. You can use the
function names corresponding to a return address to represent the return
address.

2

How to submit

Submit your handwritten homework in the submission box placed at the old aca-
demic building (2nd floor). The box will be placed on days when the homework
is due.

3

