
Homework 1: X86 instruction set

1 Introduction

The goal of this assignment is to get familiar with some of the X86 instructions.
GNU assembler follows AT&T syntax. GNU assembler instructions generally
have the form mnemonic, source, destination. E.g., mov $10, %eax; will move
10 to %eax register. In AT&T syntax:

� $ represents a constant value. E.g., $10 means constant number 10.

� An integer value without $ represents an address. E.g., 10 means an
address 10.

� Most of the instructions (except few string instructions) have at most one
memory operand.

� Instructions are suffixed with the letters “b”, “w”, “l” to determine the
size of the operands. Sometimes, the size can be determined using the
size of the register operand. In case of conflicts (mostly due to memory
operands), we need to provide suffix.

2 Addressing mode in X86

A memory operand is presented in the syntax: segment:disp[base, index, scale].
Here, disp is a 32-bit signed integer, base and index are registers, and scale can
be one of the values between 1, 2, 4, and 8. An address is computed using:
base of segment + disp + base + (index * scale). Base, index registers are
optional (i.e., a memory instruction can only have base or index or none of
them). The default segment register is %ds (if no segment register is given).
Let’s ignore segment registers for this homework and assume that the segment
value is always zero. You can refer to Table 1 for some examples.

3 Turn in

Table 2 listed some of the X86 instructions. Some of them are invalid. One
way to check if they are valid is to disassemble them using GNU assembler and
check for error messages. To disassemble them, create a file temp.s, write the

1

Operand Computed address

0x100(%eax, %edx, 4) 0x100 + %eax + (%edx * 4)

0x100 0x100

(%eax) %eax

0x100(%eax) 0x100 + %eax

(%eax, %edx, 1) %eax + (%edx * 1)

(, %edx, 1) (%edx * 1)

0x100(, %edx, 1) 0x100 + (%edx * 1)

0x100(%eax, %edx, 4) 0x100 + %eax + (%edx * 4)

0x100(, %edx, 4) 0x100 + (%edx * 4)

Table 1: Address computation on X86 architecture.

instruction as it is, and run “as –32 temp.s”. You can specify, multiple in-
structions in this file separated by a newline. For every instruction in Table 2,
write whether it is valid or not. If it is not valid, please give a reason about
what it was trying to do, which is not permitted in X86. For a valid instruction,
you need to write what it is doing.

You may refer to “Intel manual - 2” for details about all the X86 instructions.

4 How to submit

Submit your handwritten homework in the submission box placed at the old aca-
demic building (2nd floor). The box will be placed on days when the homework
is due.

2

1 mov $100, 100

2 movb $100, 100

3 movl $100, 100

4 movl $100, 100(%eax, %edx, 8)

5 add $100, 100(%eax, %edx, 8)

6 addw $100, 100(%eax, %edx, 8)

7 add $100, %eax

8 add %eax, %ecx

9 lea %eax, %eax

10 lea (%eax), %eax

11 lea 100(%eax), %eax

12 lea %eax, 100(%eax)

13 ret

14 jmp 0x100

15 jmpw 0x100

16 jmp *0x100

17 jmpb *0x100

18 jmpw *0x100

19 cmp %eax, (%eax)

20 cmp $100, (%eax)

21 cmpb $100, (%eax)

22 je 0x100

23 je *0x100

24 jne 0x100

25 ja 0x100

26 jb 0x100

27 jae 0x100

28 call 0x100

29 call *0x100

30 callb *0x100

31 and %eax, (%eax)

32 and %eax, %ecx

33 pushb %al

34 pushw %ax

35 push %eax

36 shl $12, %eax

37 shr $12, %eax

38 or $0x100, %eax

39 xor $100, %eax

40 xchg %eax, %ecx

41 xchg %eax, (%ecx)

42 xadd %eax, (%ecx)

43 pushfl

44 popfl

45 lahf

46 sahf

47 rdtsc

Table 2: X86 instructions.3

	Introduction
	Addressing mode in X86
	Turn in
	How to submit

