
BST, AVL tree, Linked lists

1 Introduction

In this assignment, you are to manage a sequence of records corresponding to
different users. Each user can be uniquely identified using a 16-byte character
array called uid. The uid is not necessarily terminated using the null character
(‘\0’) and may contain multiple null characters. You need to insert, delete, and
search record corresponding to a uid using a BST and an AVL tree. In addition,
a user can also have friends. You need to store a list of friends of every user,
which essentially means storing the references to its friends’ records.

2 Type of record

The type of a user’s record is given below.

struct record {

/* character string terminated with ’\0’

* maximum length is 16

*/

char name[MAX_LEN];

/* a character array of 16 characters

* not-necessarily terminated with ’\0’

* a uid may contain multiple ’\0’’s

* anywhere in the character array

*/

char uid[MAX_LEN];

int age;

/* location */

struct location loc;

/* list of posts */

struct list_posts *posts;

1



/* list of friends */

struct list_records *friends;

/* needed for shortest Path */

int status;

struct record *pred;

/* needed for the tree data-structure */

int height;

struct record *left;

struct record *right;

struct record *parent;

};

The uid field is the key used for the BST and the AVL tree. You can use left

and right fields to store the references to left and right subtrees in an AVL
or BST node. The height field is used for the AVL tree. The status field
is used when a record is not present during search and delete operations. The
friends field contains the head of the linked list that stores the references to
the records corresponding to a user’s friends. The type of friends is struct

list records, as shown below.

struct list_records {

struct record *record;

struct list_records *next;

};

A node of type struct list records stores a reference to struct record and
the reference to the next node (using the next field). This can be used to
implement the list of friends.

You are not allowed to change struct record or struct list records in
your implementation.

3 BST

The bst root in “pa2.c” points to the root of the BST. Initially, bst root points
to an empty tree. You need to implement insert, search, and delete operations
that insert search and delete a record of type struct record from the BST
rooted at bst root using uid as the key. In addition, a user may have multiple
friends. You need to keep track of the friends of a BST node using a linked list.
During deletion, you need to remove the user from the lists of friends of other
users.

2



4 AVL

The avl root in “pa2.c” points to the root of the AVL tree. Initially, avl root

points to an empty tree. You need to implement insert, search, and delete
operations that insert, search, and delete a record of type struct record from
the AVL tree rooted at avl root using uid as the key. In addition, a user may
have multiple friends. You need to keep track of the friends of an AVL node
using a linked list. During deletion, you need to remove the user from the lists
of friends of other users.

5 Library interface

In this assignment, you need to implement a library that implements all the
functionalities we discussed above. The user interface for your library is given
in the “pa2.h” file. Below is a short description of these interfaces.

� get bst root: Return the root of the BST, bst root. This implementa-
tion has already been provided. Please don’t change it.

� get avl root: Return the root of the AVL tree, avl root. This imple-
mentation has already been provided. Please don’t change it.

� insert record bst: Insert record r in the BST rooted at bst root.

� insert record avl: Insert record r in the AVL tree rooted at avl root.

� search record bst: Search the record corresponding to uid in the BST
rooted at bst root. If the record is not present, return a dummy record
with −1 in the status field; otherwise, return a copy of the record.

� search record avl: Search the record corresponding to uid in the AVL
tree rooted at avl root. If the record is not present, return a dummy
record with −1 in the status field; otherwise, return a copy of the record.

� make friends bst: Make users with uids uid1 and uid2 in the BST rooted
at bst root friends of each other if they aren’t already friends. The
friends field in “struct record” stores the head of the linked list of friends
of a given user. To make the user with record A a friend of the user with
record B, add A to B’s list of friends and add B to A’s list of friends.
Return 1 if uid1 and uid2 are already friends before this call. Return 0 if
they become friends during this call.

� make friends avl: Make users with uids uid1 and uid2 in the AVL tree
rooted at avl root friends of each other if they aren’t already friends.
The friends field in “struct record” stores the head of the linked list of
friends of a given user. To make the user with record A a friend of the user
with record B, add A to B’s list of friends and add B to A’s list of friends.
Return 1 if uid1 and uid2 are already friends before this call. Return 0 if
they become friends during this call.

3



� get friends list bst: The friends field in “struct record” stores the
head of the linked list of friends of a given user. Return the head of the
linked list of friends (i.e., the friends field) of the user with uid uid in
the BST rooted at bst root. If the corresponding record doesn’t exist,
return NULL.

� get friends list avl: The friends field in “struct record” stores the
head of the linked list of friends of a given user. Return the head of the
linked list of friends (i.e., the friends field) of the user with uid uid in the
AVL tree rooted at avl root. If the corresponding record doesn’t exist,
return NULL.

� delete record bst: Delete record (say n) corresponding to uid from the
BST rooted at bst root. Also, remove n from the lists of friends of other
records and release the memory for the linked list nodes. Release memory
for all the nodes in the list of friends of n. Return a copy of the value of
the deleted node. If the node is not present, return a dummy record with
−1 in the status field.

� delete record avl: Delete record (say n) corresponding to uid from the
AVL tree rooted at avl root. Also, remove n from the lists of friends of
other records and release the memory for the linked list nodes. Release
memory for all the nodes in the list of friends of n. Return a copy of the
value of the deleted node. If the node is not present, return a dummy
record with −1 in the status field.

� get num bst records: Return the total number of records in the BST
rooted at bst root.

� get num avl records: Return the total number of records in the AVL
tree rooted at avl root.

� destroy bst: Release memory for all BST nodes and their lists of friends.
Make bst root points to an empty tree.

� destroy avl: Release memory for all AVL nodes and their lists of friends.
Make avl root points to an empty tree.

6 Compilation and running the test cases

Clone the assignment repository using:
git clone https://github.com/Systems-IIITD/DSALAB.git

Implement everything in the “PA2/pa2.c” file. Don’t change any other files.
Use printf to debug your code. Run “make” in the “PA2” folder to compile
your library and test cases. There are four test cases. To run the first test
cases: use “./test1 10”. It will test your program for ten records. Once your
implementation works for small sizes, test and debug it for large sizes. To run

4

https://github.com/Systems-IIITD/DSALAB.git


the second test for size 10, use “./test2 10”. To run the third test case for size
10, use “./test3 10”. To run the fourth test case for size 10, use “./test4 10”. We
will test your implementation for large input sizes. So make sure to test them
for large inputs as well. You are not allowed to use malloc and free directly in
your library. Use allocate memory and free memory routines provided to you
instead of malloc and free.

6.1 How to submit

Remove all printf statements from your library before submitting. Create
a report in pdf format that contains the output of “make submit1”, “make
submit2”, “make submit3”, and “make submit4”. Submit the “pa2.c” file along
with your report. A sample format of the report is shown below. Use the same
format in your submission.

Sample report file.

The output of make submit1:

echo "Compiling test-case 1"

Compiling test-case 1

gcc -g -Werror -O3 -L. -Wl,-rpath=. -o test1 test1.c -ldsa -lpa2 -lm

./test1 100000

Creating 100000 uids took 79 ms.

adding 100000 records took 31 ms.

making 599982 friends took 229 ms.

search 100000 records took 25 ms.

Test-case-1 passed

./test1 1000000

Creating 1000000 uids took 1548 ms.

adding 1000000 records took 808 ms.

making 5999982 friends took 6091 ms.

search 1000000 records took 860 ms.

Test-case-1 passed

The output of make submit2:

echo "Compiling test-case 2"

Compiling test-case 2

gcc -g -Werror -O3 -L. -Wl,-rpath=. -o test2 test2.c -ldsa -lpa2 -lm

./test2 100000

Creating 100000 uids took 81 ms.

adding 100000 records took 32 ms.

making 599982 friends took 237 ms.

deleting 50000 records took 465 ms.

Test-case-2 passed

./test2 1000000

Creating 1000000 uids took 1562 ms.

adding 1000000 records took 815 ms.

5



making 5999982 friends took 6092 ms.

deleting 500000 records took 10456 ms.

Test-case-2 passed

The output of make submit3:

echo "Compiling test-case 3"

Compiling test-case 3

gcc -g -Werror -O3 -L. -Wl,-rpath=. -o test3 test3.c -ldsa -lpa2 -lm

./test3 100000

Creating 100000 uids took 78 ms.

adding 100000 records took 32 ms.

making 599982 friends took 199 ms.

search 100000 records took 23 ms.

Test-case-3 passed

./test3 1000000

Creating 1000000 uids took 1600 ms.

adding 1000000 records took 641 ms.

making 5999982 friends took 4231 ms.

search 1000000 records took 590 ms.

Test-case-3 passed

The output of make submit4:

echo "Compiling test-case 4"

Compiling test-case 4

gcc -g -Werror -O3 -L. -Wl,-rpath=. -o test4 test4.c -ldsa -lpa2 -lm

./test4 100000

Creating 100000 uids took 78 ms.

adding 100000 records took 32 ms.

making 599982 friends took 197 ms.

deleting 50000 records took 455 ms.

Test-case-4 passed

./test4 1000000

Creating 1000000 uids took 1549 ms.

adding 1000000 records took 630 ms.

making 5999982 friends took 4158 ms.

deleting 500000 records took 10068 ms.

Test-case-4 passed

6


