
HOMEWORK-2 

Total Points: 85 

 

Compile your program with the O3 flag to ensure that all optimizations are enabled before 

reporting the runtime. E.g., "gcc -O3 -o fib fib.c" will generate an optimized executable "fib" for 

your program. 

 

1. [10 points] Write an implementation of the mul2 routine that is used in the matrix 

multiplication based solution for Fibonacci. 

 

2. [15 points] Modify the four algorithms for Fibonacci numbers discussed in class (see 

below) to compute the “nth Fibonacci number % 10000” instead of the “nth Fibonacci 

number”. 

 

● Algorithm-1: fib(n) = fib(n-1) + fib(n-2) 

● Algorithm-2: fib(n) returns (fib(n), fib(n-1)) 

● Algorithm-3: The iterative solution 

● Algorithm-4: using matrix multiplication 

 

Run all these four algorithms for various numbers of n, and answer the following 

questions. 

 

● What is the runtime of Algorithm-1 for n = 44? 

● What are the runtimes and the return values of fib(n) (i.e., the “nth Fibonacci 

number % 10000”) for the other three algorithms when n is 1 lakh, 5 lakhs, 1 

million, 100 million, 1000 million, and 2000 million? 

 

 

You don’t need to submit your modified algorithm. You can use an implementation 

similar to the following one to print the runtime of the fib routine. 

 

#include <stdio.h> 

#include <sys/time.h> 

 

int fib(int n) { 

   if (n == 0 || n == 1) 

      return n; 

   return (fib(n-1) + fib(n-2)) % 10000; 

} 

 

int main() { 

  struct timeval start; 

  struct timeval end; 

  unsigned long t; 



  int r; 

 

  gettimeofday(&start, 0); 

  r = fib(44); 

  gettimeofday(&end, 0); 

 

  t = ((end.tv_sec * 1000000) + end.tv_usec) -  

((start.tv_sec * 1000000) + start.tv_usec); 

  printf("r:%d\n", r); 

  printf("elapsed time: %lf milliseconds\n", t/1000.0); 

  return 0; 

} 

 

 

3. [25 points] Consider the following caching algorithm for Fibonacci numbers, as 

discussed in class. 

 

int cache[1000] = {0}; 

int num_calls = 0; 

 

int fib(int n) { 

  num_calls++; 

  if (cache[n] != 0) 

    return cache[n]; 

  if (n == 0 || n == 1) 

    return n; 

  int r = (fib(n-1) + fib(n-2)) % 10000; 

  cache[n] = r; 

  return 0; 

} 

 

This algorithm works only when the value of n is less than 1000. In this algorithm, we 

save the return values of all Fibonacci numbers between 2 and n. Therefore, if we use a 

larger value of n, we might need a lot of memory for the cache. But as we know that at a 

given point, only the value of fib(n-2) is needed to avoid the recomputation. So we 

can achieve similar performance with a cache of size one that stores the previously 

computed value corresponding to fib(n-2). The skeleton of the proposed algorithm is 

shown below. In this code, the implementations of BLOCK-1 and BLOCK-2 are missing. 

Write the implementation of BLOCK-1 and BLOCK-2 in such a way that the modified 

algorithm will make the same number of recursive calls for n = 900 as it will make for the 

above algorithm with the cache size 1000. The cache_entry contains two fields, "key" 

and "val". "key" contains an integer value, and "val" contains the “Fibonacci 

number % 10000” corresponding to "key". 

 



struct cache_entry { 

  int key; 

  int val; 

}; 

 

int num_calls = 0; 

 

struct cache_entry cache[1]; 

 

int fib(int n) { 

  num_calls++; 

 

  /* BLOCK-1: add some code here */ 

 

  if (n == 0 || n == 1) 

    return n; 

  int r1 = fib(n-1); 

  int r2 = fib(n-2); 

  int r = (r1 + r2) % 10000; 

 

  /* BLOCK-2: add some code here. */ 

  return r; 

} 

 

● Provide the implementations of BLOCK-1 and BLOCK-2. 

● What is the runtime of your modified algorithm when n is 1 lakhs, 5 lakhs, and 1 

million? 

 

4. [10 points] Write an implementation of the cmp_string routine that takes two 

character strings (in this case, a character string is a word in an English dictionary) as 

input and returns 0, -1, or 1 when the first argument is equal to, less than, or greater 

than the second argument, respectively. Notice that a character string is a sequence of 

chars in a char array that terminates with ‘\0’. Your implementation should ignore the 

case (i.e., dog and DoG are the same strings). You are not allowed to use any library 

function. The prototype of the cmp_string is the following: 

 

int cmp_string(char str1[], char str2[]); 

 

5. [25 points] Extend the Towers of Hanoi problem discussed in the class to use four 

towers instead of three towers. In your modified solution, for all n > 2, the number of 

moves must be less than the number of moves needed for three towers. Let’s say the 

prototype of the new move function is:  
void move(int n, char src[], char dst[], char tmp1[], char tmp2[]); 

 

The goal is to move n discs from the src to dst using tmp1 and tmp2 as temporaries. 



 

● Write your extended algorithm. 

● Write the sequence of function calls and their arguments that will take place when we 

invoke move in your extended implementation as move(4, “T1”, “T4”, “T2”, “T3”). 

● What is the output of your algorithm when we invoke move in your extended 

implementation as move(4, “T1”, “T4”, “T2”, “T3”)? 

● Write the sequence of function calls and their arguments that will take place when we 

invoke the move routine in the solution for three towers as move(4, “T1”, “T3”, “T2”). 

● What is the output of your algorithm when we invoke the move routine in the solution for 

three towers as move(4, “T1”, “T3”, “T2”)? 


