
HOMEWORK-10
Total Points: 65

Q1. [20 Points] Let’s consider the adjacency lists representation for directed graphs. The
adjacency lists entries correspond to outgoing edges. For graph G, an adjacency list node also
contains a 1024-byte payload for every edge. The payload is the same for a given edge,
whether we treat it as an incoming edge or the outgoing edge. The type of a node in the
adjacency list node is the following:

struct node {
int vertex;
char payload[1024];
struct node *next;

};

The array of vertices simply stores a reference to the head of the corresponding adjacency list.
How do you efficiently store incoming edges too in the adjacency list of G without replicating the
payload? What would be the type of adjacency list node in your design? Also, draw the
adjacency lists generated using your algorithm for the following graph.

Q2. [20 points] Give an algorithm for the findPath procedure that takes a graph G, a source
vertex s, and a length l, and returns true if a non-circular path of length l from s to any other
vertex exists; otherwise, it returns false.

Q3. [10 Point] What would be the time complexity of the BFS algorithm if we use an adjacency
matrix instead of adjacency lists to store the edges? Justify your answer.

Q4. [15 Points] Write down the state of the entire queue after every insertion and deletion in the
queue during the BFS algorithm running for vertex 1 on the adjacency list shown on the next
page. Notice that an element of the queue is a pair of vertex and its distance from the source.




