
HOMEWORK-1

Total Points: 40

1. [5 points] Consider the following declaration of a 2-D array.

int a[4][3];

List all elements (i.e., a[0][0], a[0][1], …, etc.) in the array. If the starting address

of the array is 1000, compute the address of each element in the array. Which address

will be written when you try to execute the statement “a[1][7] = 100”?

2. [5 points] Write a definition of the strcmp routine that takes two character arrays

containing ‘\0’ terminated strings. It returns 0 if the character strings are equal;

otherwise, it returns 1. The prototype of the strcmp routine is as follows:

int strcmp(char str1[], char str2[])

3. [20 points] Consider the definition of the power function below, as discussed in class.

int power(int x, int n) {

 int pow_h;

 if (n == 0) // one comparison operation

 return 1;

 if ((n % 2) == 0) { // one comparison operation

 pow_h = power(x, n/2);

 return pow_h * pow_h; // one multiplication operation

 }

 else {

 pow_h = power(x, (n-1)/2);

 return x * pow_h * pow_h; // two multiplication operations

 }

}

How many comparisons, multiplications, and function calls will occur during the

computation of power(3, 23)?

Now rewrite the definition of power that roughly computes x^(n/3) instead of x^(n/2)

during the recursive step, and add more conditions to compute the correct value of x^n,

where ^ is the power operator.

How many comparisons, multiplications, and function calls will occur during the

computation of power(3, 23) in your modified implementation?

4. [10 points] Consider the definition of the fib function below, as discussed in class.

int fib(int n) {

 if (n == 0 || n == 1)

 return n;

 return fib(n-1) + fib(n-2);

}

As discussed, during the execution of the fib(4), the following function calls will be

made in the given order.

fib(4), fib(3), fib(2), fib(1), fib(0), fib(1), fib(2), fib(1),

fib(0)

Write the sequence of function calls that will be made during the execution of fib(6) in

the correct order.

