
Equality logic with uninterpreted functions

Implement a decision procedure for equality logic with uninterpreted functions. The grammar of
the above logic is defined as follows:

𝑓𝑜𝑟𝑚𝑢𝑙𝑎 : 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 ∧ 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 | ¬𝑓𝑜𝑟𝑚𝑢𝑙𝑎 | (𝑓𝑜𝑟𝑚𝑢𝑙𝑎) | 𝑎𝑡𝑜𝑚
𝑎𝑡𝑜𝑚 : 𝑡𝑒𝑟𝑚 = 𝑡𝑒𝑟𝑚 | 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒–𝑠𝑦𝑚𝑏𝑜𝑙 (𝑙𝑖𝑠𝑡 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠)
𝑡𝑒𝑟𝑚 : 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 | 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛–𝑠𝑦𝑚𝑏𝑜𝑙 (𝑙𝑖𝑠𝑡 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠)

To check the satisfiability of an input formula, first create a DAG. You can use parser generator
tools such as Flex+Bison (C/C++) and Antlr (Java) to generate a DAG. After generating the
DAG, use the algorithm based on the union-find data structure to compute the congruence class
of each node in the DAG. Finally, verify that the inequalities don’t belong to the same
congruence class for satisfiability.

See Chapter 9.3 from the Calculus of Computation book for more details.

Here are some of the test cases. Each line is a different test case.

1. f(f(f(a))) = a & f(f(f(f(f(a))))) = a & f(a) != a
2. f(a, b) = a & f(f(a,b),b) != a
3. f(x, y) = f(y, x) & f(a,y) != f(y,a)
4. f(g(x)) = g(f(x)) & f(g(f(y))) = x & f(y) = x & g(f(x)) != x
5. f(f(f(a))) = f(f(a)) & f(f(f(f(a)))) = a & f(a) != a
6. f(f(f(a))) = f(a) & f(f(a)) = a & f(a) != a
7. f(f(x1, y1) , f(x2, y2)) != x1 & f(x1, y1) = x1 & f(x2, y2) = y2 & y1 = y2
8. f(a, b) = g(f(c))

Siddharth Nayak and Puneet Kumar have kindly agreed to give a tutorial on Flex+Bison and
Antlr tools if needed. Please feel free to talk to them if you need help. You can use any
programming language of your choice. Submit your implementation and instructions on how to
compile and run your implementation. You can do it in a group of up to three students. The
group for this assignment must be different from all your previous groups. All students in a group
need to understand the implementation thoroughly. The marks will be given based on the
average understanding of the group.

Bonus marks:
You can get up to two bonus marks if you provide good test cases.

