RDT': Reliable data transport protocol on an
unreliable network

The goal of this assignment is to develop a reliable data transfer protocol,
RDT, for reliably transferring data over an underlying unreliable channel. RDT
is somewhat similar to TCP, but it doesn’t implement flow and congestion con-
trol. The unreliable transmission channel can drop packets, but it can’t corrupt
them. RDT assumes that both the sender and receiver have sufficient space to
store all out-of-order packets, i.e., there is no restriction on the window size.
RDT uses a 63-bit sequence number (one bit is used for a validity check). The
starting sequence number must be zero. The sequence number is for every byte,
as in TCP. The wrapping of sequence numbers is not handled, as 63 bits are
sufficient for a very large amount of data transfer. The acknowledgments are
sent in a cumulative manner, similar to TCP.

1 Implementation

We have already provided you with a skeleton code. You can use the existing
APIs, and you will need to implement some APIs.
Below are the API you can use in the sender and receiver.

1.1 Sender

e udt_send(pkt, len): Send a packet, pkt, of length len to the unreliable
channel.

e make pkt(buf, seqno): Embed 63-bit sequence number, seqno, in the
buffer, buf. The size of buf remains the same.

e get_seqno(pkt): Fetch sequence number from the packet, pkt.
e start_timer(): Start the timer.

e stop_timer(): Stop the timer.

1.2 Receiver

e get_seqno(pkt): Takes the address of a packet, pkt, as input. Fetch
sequence number from the pkt.



e get_data(pkt): Takes the address of a packet, pkt, as input. Returns a
pointer to the data computed from pkt.

e send_ack(ackno): Send an acknowledgment number, ackno, to the sender.

e notify_app(): Notifies the application that some data is available for the
application’s consumption.

You are to implement the following APIs.

1.3 Send

e rdt_send(buf, len): Transmits the input buffer, buf, of length len bytes
to the transmission channel. len must be greater than PACKET_HEADER_LEN,
which is already ensured by the caller. Use make_pkt to add a per-byte
sequence number. make_pkt doesn’t change the length of the buffer. It
embeds the sequence number in the buf. The initial sequence number
must be zero. Start the timer if necessary.

e rdt_recv_base(ackno): Called when the sender receives an acknowledg-
ment number, ackno. ackno must be a cumulative acknowledgment, as in
the case of TCP. Update send_base and start or stop timer, as needed.

e timeout(): If needed, retransmit the segment at send base, as TCP does.
Don’t transmit more than one segment.

1.4 Receive

e rdt_recv(pkt, len): Called when the receiver receives a packet, pkt.
Use get_seqno and get_data to fetch the sequence number and a pointer
to the data field from pkt. The length of data is len - PACKET_HEADER_LEN.
Call notify_app if the app can consume some data at this point. Send a
cumulative acknowledgment similar to TCP using send_ack.

e app_recv(buf, len): App requested data of length up to len bytes. If
len bytes are available, copy them to buf; otherwise, copy x bytes, where
x is the length of data that is available for application use. The return
value is the number of bytes copied to buf. After delivering the data to
the application, the receiver can throw away the data. For subsequent
calls to app_recv, the data after the last call will be copied to the buf.

2 Environment

For this assignment, you need to clone the project repository.
To clone, run:
git clone https://github.com/Systems-IIITD/rdt



To build the tools, run make in the rdt folder. It will create two applica-
tions: sender and receiver.

Run sender using: ./sender
Run receiver using: ./receiver

Ensure that you run the sender before the receiver. You need to run both
sender and receiver on the same machine.

You need to modify two files: sender_helper.c and receiver_helper.c.
You are not allowed to change any other files for the final submission. You can
find the prototype of all relevant functions in the server.h and client.h files.

You are not allowed to use custom APIs to send and receive data. Use
udt_send and send_ack APIs for data transmission. You can’t use network-
related system calls, such as select, poll, epoll, socket, bind, listen,
send, recv, sendto, recvfrom, connect, accept, etc., in your implemen-
tation of client_helper.c and server_helper.c.

The default test case, i.e., the test routine in server.c, would be slightly
harder to debug initially. Instead, you can write and debug with your own
simple test cases first, before making the given test case work. In your test case,
use the create_pkt API to create a packet. create_pkt creates a packet of size
pkt_sz. pkt_sz must be greater than PACKET_HEADER_LEN. The seqgno argument
in create_pkt is one more than the expected sequence number of the first data
byte in the packet. To embed the sequence number in the packet, you must use
the make_pkt API. You can read the sequence number of the first data byte in
the packet using get_seqno. After sending a bunch of packets, the sender_poll
API waits for an acknowledgment. sender_poll also handles the timeout.

3 Test cases and their weightage

There are two test cases. By default, the sender and receiver run the first test
case. You can run the second test case using: ./sender 1

The receiver doesn’t take additional parameters, and is invoked in the same way
for both test cases. The test cases must finish within 60 seconds. Both test cases
are of 5 marks. If the test is successful, the sender prints “test PASSED” after
a bunch of checkpoint messages. For a failed test case, you’ll receive zero. If a
test case takes between 60 seconds and 120 seconds, you'll receive half marks if
the test case passes. If it takes more than 120 seconds, you’ll receive zero, even
if the test case passes.

4 How to submit.

Don’t leave any print statements in your code. You will receive zero if your
implementation prints any additional information.



Create a design document in the PDF format and answer the following
questions in your design documentation.

1

2.

ook W

7.

Does test case 1 pass? Write the output of the sender for test case 1.
Does test case 2 pass? Write the output of the sender for test case 2.
What is the runtime of test case 17
What is the runtime of test case 27

Invoke the sender as /usr/bin/time -v ./sender 1 and the receiver
as /usr/bin/time -v ./receiver. What is the value of Elapsed (wall
clock) time and the Maximum resident set size at both sender and re-
ceiver?

Invoke the sender as /usr/bin/time -v ./sender and the receiver as
/usr/bin/time -v ./receiver. What is the value of Elapsed (wall clock)
time and the Maximum resident set size at both sender and receiver?

Write the names and roll numbers of all group members.

Submit sender_helper.c, receiver_helper.c, and your design documen-
tation. Use the naming convention for the assignments and homework. Your
assignment will not be evaluated if you don’t follow the submission guidelines.



