
RDT: Reliable data transport protocol on an

unreliable network

The goal of this assignment is to develop a reliable data transfer protocol,
RDT, for reliably transferring data over an underlying unreliable channel. RDT
is somewhat similar to TCP, but it doesn’t implement ow and congestion con-
trol. The unreliable transmission channel can drop packets, but it can’t corrupt
them. RDT assumes that both the sender and receiver have sucient space to
store all out-of-order packets, i.e., there is no restriction on the window size.
RDT uses a 63-bit sequence number (one bit is used for a validity check). The
starting sequence number must be zero. The sequence number is for every byte,
as in TCP. The wrapping of sequence numbers is not handled, as 63 bits are
sucient for a very large amount of data transfer. The acknowledgments are
sent in a cumulative manner, similar to TCP.

1 Implementation

We have already provided you with a skeleton code. You can use the existing
APIs, and you will need to implement some APIs.

Below are the API you can use in the sender and receiver.

1.1 Sender

• udt send(pkt, len): Send a packet, pkt, of length len to the unreliable
channel.

• make pkt(buf, seqno): Embed 63-bit sequence number, seqno, in the
buer, buf. The size of buf remains the same.

• get seqno(pkt): Fetch sequence number from the packet, pkt.

• start timer(): Start the timer.

• stop timer(): Stop the timer.

1.2 Receiver

• get seqno(pkt): Takes the address of a packet, pkt, as input. Fetch
sequence number from the pkt.

1



• get data(pkt): Takes the address of a packet, pkt, as input. Returns a
pointer to the data computed from pkt.

• send ack(ackno): Send an acknowledgment number, ackno, to the sender.

• notify app(): Noties the application that some data is available for the
application’s consumption.

You are to implement the following APIs.

1.3 Send

• rdt send(buf, len): Transmits the input buer, buf, of length len bytes
to the transmission channel. lenmust be greater than PACKET HEADER LEN,
which is already ensured by the caller. Use make pkt to add a per-byte
sequence number. make pkt doesn’t change the length of the buer. It
embeds the sequence number in the buf. The initial sequence number
must be zero. Start the timer if necessary.

• rdt recv base(ackno): Called when the sender receives an acknowledg-
ment number, ackno. ackno must be a cumulative acknowledgment, as in
the case of TCP. Update send base and start or stop timer, as needed.

• timeout(): If needed, retransmit the segment at send base, as TCP does.
Don’t transmit more than one segment.

1.4 Receive

• rdt recv(pkt, len): Called when the receiver receives a packet, pkt.
Use get seqno and get data to fetch the sequence number and a pointer
to the data eld from pkt. The length of data is len - PACKET HEADER LEN.
Call notify app if the app can consume some data at this point. Send a
cumulative acknowledgment similar to TCP using send ack.

• app recv(buf, len): App requested data of length up to len bytes. If
len bytes are available, copy them to buf; otherwise, copy x bytes, where
x is the length of data that is available for application use. The return
value is the number of bytes copied to buf. After delivering the data to
the application, the receiver can throw away the data. For subsequent
calls to app recv, the data after the last call will be copied to the buf.

2 Environment

For this assignment, you need to clone the project repository.
To clone, run:
git clone https://github.com/Systems-IIITD/rdt

2



To build the tools, run make in the rdt folder. It will create two applica-
tions: sender and receiver.

Run sender using: ./sender
Run receiver using: ./receiver

Ensure that you run the sender before the receiver. You need to run both
sender and receiver on the same machine.

You need to modify two les: sender helper.c and receiver helper.c.
You are not allowed to change any other les for the nal submission. You can
nd the prototype of all relevant functions in the server.h and client.h les.

You are not allowed to use custom APIs to send and receive data. Use
udt send and send ack APIs for data transmission. You can’t use network-
related system calls, such as select, poll, epoll, socket, bind, listen,

send, recv, sendto, recvfrom, connect, accept, etc., in your implemen-
tation of client helper.c and server helper.c.

The default test case, i.e., the test routine in server.c, would be slightly
harder to debug initially. Instead, you can write and debug with your own
simple test cases rst, before making the given test case work. In your test case,
use the create pkt API to create a packet. create pkt creates a packet of size
pkt sz. pkt sz must be greater than PACKET HEADER LEN. The seqno argument
in create pkt is one more than the expected sequence number of the rst data
byte in the packet. To embed the sequence number in the packet, you must use
the make pkt API. You can read the sequence number of the rst data byte in
the packet using get seqno. After sending a bunch of packets, the sender poll

API waits for an acknowledgment. sender poll also handles the timeout.

3 Test cases and their weightage

There are two test cases. By default, the sender and receiver run the rst test
case. You can run the second test case using: ./sender 1

The receiver doesn’t take additional parameters, and is invoked in the same way
for both test cases. The test cases must nish within 60 seconds. Both test cases
are of 5 marks. If the test is successful, the sender prints test PASSED after
a bunch of checkpoint messages. For a failed test case, you’ll receive zero. If a
test case takes between 60 seconds and 120 seconds, you’ll receive half marks if
the test case passes. If it takes more than 120 seconds, you’ll receive zero, even
if the test case passes.

4 How to submit.

Don’t leave any print statements in your code. You will receive zero if your
implementation prints any additional information.

3



Create a design document in the PDF format and answer the following
questions in your design documentation.

1. Does test case 1 pass? Write the output of the sender for test case 1.

2. Does test case 2 pass? Write the output of the sender for test case 2.

3. What is the runtime of test case 1?

4. What is the runtime of test case 2?

5. Invoke the sender as /usr/bin/time -v ./sender 1 and the receiver
as /usr/bin/time -v ./receiver. What is the value of Elapsed (wall
clock) time and the Maximum resident set size at both sender and re-
ceiver?

6. Invoke the sender as /usr/bin/time -v ./sender and the receiver as
/usr/bin/time -v ./receiver. What is the value of Elapsed (wall clock)
time and the Maximum resident set size at both sender and receiver?

7. Write the names and roll numbers of all group members.

Submit sender helper.c, receiver helper.c, and your design documen-
tation. Use the naming convention for the assignments and homework. Your
assignment will not be evaluated if you don’t follow the submission guidelines.

4


