Ping using UDP

The goal of this assignment is to understand the various fields in the UDP
and ICMP packets. In this assignment, you are to convert a UDP packet to
an ICMP echo request in the send path and convert the ICMP echo reply to a
UDP packet in the receive path of the E1000 device driver.

1 Background

1.1 UDP

User Datagram Protocol (UDP) enables an application to talk to another appli-
cation running on a different host. Once a UDP packet arrives at the transport
layer from the network layer, its job is to deliver the packet to the application,
which is trying to receive a packet on a port number that matches the desti-
nation port number in the packet. During the send path, the transport layer
adds the source and destination port numbers to the packet for application-to-
application delivery.
A UDP packet header looks like the following:

struct udphdr {
__bel6 source; // source port
__bel6 dest; // destination port
__bel6 len; // length of UDP header + data
__sumil6 check; // Checksum
3

The len field contains the sum of the length of the payload and the length
of the UDP header (which is always eight), in Big-endian format. Here, __bel6
indicates a 2-byte value in Big-endian format. The size of the UDP header is
8 bytes. A pseudo IP header is prepended to the UDP packet for checksum
computation. The checksum is performed on the buffer that stores the pseudo
IP header, followed by the UDP header and payload. However, the pseudo
IP header is not included in the actual packet; it’s used just for the checksum
computation. If the payload size is not a multiple of 16 bits, an additional
8-bit padding with zero value is appended to the buffer during the checksum
computation.

The pseudo IP header has the following fields.

struct pseudo_header {

__be32 saddr; // source IP address

__be32 daddr; // destination IP address

__u8 zero; // always zero

__u8 protocol; // 17 for UDP

__bel6 total_len; // same as the length field in the UDP header
};

Here, __be32 is a 4-byte Big-endian value. The value of total_len is the
same as the len field in the UDP header. The saddr and daddr are the source
and destination IP addresses, which are also present in the IP header struct
iphdr as shown below:

struct iphdr {
u8 ihl:4; // length of header = ihl * 4
__u8 version:4; // 4-bit version
__u8 tos;
__bel6 tot_len; // Entire packet size, header + data
__bel6 id;
__bel6 frag_off;
__u8 ttl; // Hop limit, decremented at each hop
__u8 protocol; // protocol ICMP=1, UDP=17
__sumil6 check; // header checksum
__be32 saddr; // source IP address
__be32 daddr; // destination IP address
char options[]; // variable length
};

Notice that the length of an IP header could be variable. The actual length
of the network header is the value of the ihl field multiplied by four. The
total size of the packet, i.e., length of IP header + length of Transport header
+ payload size is stored in the tot_len field. The check field contains the
checksum of the header. The checksum algorithm is discussed in class. If you
make any changes to the IP header, you must update the check field to reflect
the new checksum. The protocol field in the struct iphdr is 17 for UDP and
one for ICMP.

1.2 ICMP

The Internet Control Message Protocol (ICMP) is used for end-hosts to commu-
nicate network-layer information to each other. The ICMP message is neither a
UDP message nor a TCP message. It’s considered part of the network layer, but
it’s stored similarly to a UDP packet, i.e., IP header followed by ICMP header
followed by ICMP payload, as shown in Figure 1.

An ICMP header has the following fields:

14 bytes min 20 bytes 8 bytes variable length

NeTwork HOR [[JUBRIHDRI PAYLOAD

14 bytes min 20 bytes 8 bytes variable length

NETWORK HDR [JCNIPHDRN PAYLOAD

Figure 1: A UDP packet (top), an ICMP packet (bottom)

8-bytes for UDP
14-bytes minimum 20-bytes minimum 20-bytes for TCP variable length

[TRANSPORT

Figure 2: A packet with headers

struct icmphdr {

__u8 type;
__u8 code;
__suml6 checksum;
__bel6 id;

__bel6 sequence;

};

ICMP packets can be of different types, and id and sequence fields can be
interpreted differently depending on the type (the Linux kernel uses a union
for other interpretations of these fields). In this assignment, we are interested
in ICMP echo requests and ICMP echo replies. The type field for ICMP echo
request is eight, and the type field for ICMP echo reply is zero. The code field
is zero for both the ICMP echo request and reply. During the echo request,
the application set the id to a value that can be used by the kernel to identify
it, e.g., the process id. When an ICMP echo reply is received, the OS looks
at the id field and delivers the message to the application that previously sent
the echo request with this id. A process can send multiple echo requests. The
sequence field is used to correlate a request with a reply. The ICMP payload
can be of variable length. The destination host simply ignores the value of the
payload. The payload is copied as it is in an ICMP reply. The checksum field
contains the checksum of the ICMP header and the payload. Notice that before
the checksum computation, the value of the checksum field is set to zero in all
kinds of packet headers, e.g., ICMP, UDP, or IP packet headers.

1.3 Packet structure

A packet (Figure 2) at the data-link layer has several headers. The first 14 bytes
correspond to the data-link layer (or Ethernet) header. The next is the network
layer (or IP) header. The minimum size of the IP header is 20 bytes. However,

it can be more than 20 bytes if certain features are requested. After that, there
is a transport layer header. If the packet is a UDP packet, the header size is
eight bytes. For a TCP packet, the header size is at least 20 bytes (it can be
more than 20 bytes if certain features are enabled).

struct sk_buff facilitates easy access to different headers in a packet. struct
sk_buff provides various fields such as mac_header, network_header, and transport_header
that point to the link-layer, network-layer, and transport-layer headers, respec-
tively. The Linux kernel also provides eth_hdr, ip_hdr, udp_hdr, tcp_hdr rou-
tines to fetch the different headers from struct sk_buff. These routines return
a pointer of type struct ethhdr, struct iphdr, struct udphdr, and struct
tcphdr. These structs allow users to conveniently read/write to different fields
in the corresponding headers.

1.4 E1000 device driver

The main job of the E1000 device driver is to facilitate the sending and receiving
of packets using transmit and receive rings, as discussed in the lecture. In this as-
signment, the relevant routines are €1000_xmit_frame and e1000_receive_skb.

e1000_xmit_frame takes an argument skb of type struct sk_buff as input.
skb contains pointers to the various headers of the actual packet, which is ready
for transmission. This routine updates an available descriptor in the transmit
ring with the physical address of the packet and updates the TDT register, which
allows the NIC to transmit the packet.

The E1000 driver uses e1000_receive_skb to handle the packet to the net-
work layer after receiving a packet. At this point, the various fields of the struct
sk_buff might not have been initialized properly. However, skb->data points
to the IP header (i.e., struct iphdr*). Using the value of the header length, total
length, and protocol in the IP header, you can compute the address of other
headers and the payload.

2 User Tools

You are provided an application: udpping. The udpping application takes
an IP address, say 172.23.65.98, as input. For convenience, we will use
172.23.65.98 as a placeholder for the user-supplied IP address. After receiv-
ing the inputs, updping instructs the network driver to send an ICMP echo
request destined to 172.23.65.98. udpping creates and sends a UDP message
of eight bytes to a fixed IP address 100.100.100.100. The first four bytes
of the UDP message contain 172, 23. 65, 98, i.e., the bytes corresponding to
the user-supplied IP address. In the rest of the four bytes, a magic number
0xDECAF is stored (in the Little-endian format). In the rest of the document,
whenever we mention the magic number, it’s always OxDECAF.

3 Implementation

In this assignment, you need to monitor all ongoing packets in the E1000 driver,
and if a UDP packet is destined to 100.100.100.100, you need to fetch the des-
tination address from the payload (say X), convert the UDP packet into ICMP
echo request with the destination address X, and send it to X. You are allowed to
change the first four bytes of the payload, but not the magic number because it’s
needed to identify the ICMP reply in the receive path (i.e., e1000_receive_skb).
In the receive path, check for all ICMP echo replies. If the payload contains the
magic number, you need to convert it back into the UDP packet before handing
it to the network layer.

Notice that the transport layer needs to know the destination port number
in order to deliver it to the correct application. After sending a packet udpping
expects a response on the same port number used for sending. Therefore, to
find the correct destination port, you can save the source port somewhere in the
first four bytes while converting the UDP packet into an ICMP packet in the
send path. In the send path, you need to initialize the fields correctly in the
ICMP header and save the source port number in the payload. Alternatively,
you can store the source port number in the id field of the ICMP header. In
this case, you don’t need to change the payload. You also need to change the
destination address and protocol in the IP header. Finally, you need to compute
and store the correct checksum in both the ICMP and IP headers.

In the receive path, after you have identified the correct ICMP reply, you
need to convert it into a UDP packet. You need to properly initialize all the
fields in the UDP header, including the destination port number, which is stored
in the payload (or in the id field of the ICMP header). You need to change the
protocol field in the IP header. Finally, you need to properly compute and
store the checksum in both UDP and IP headers.

4 Other details

The Intel NIC supports fast checksum computation. Therefore, instead of com-
puting the checksum itself while sending a packet, the Linux kernel prefers
configuring the NIC device to compute it before sending. The NIC takes the
starting address of the buffer, the length of the buffer, and the offset at which
the checksum needs to be stored as input. Using this information, the NIC
computes the checksum of the buffer and stores it at the correct offset. As
the checksum offset and the data used for the checksum are different for UDP
and ICMP, the automatic computation can cause inconsistencies. The better
strategy would be to compute the checksum of the IP header and the ICMP
packet yourself. There is a field called ip_summed in struct sk_buff. If this
field is set to CHECKSUM_PARTIAL, E1000 configures the NIC to compute the
checksum. To stop checksum computation in the NIC, you can set this field to
CHECKSUM_COMPLETE after computing and storing the correct checksums.

5 Environment

For this assignment, you need to clone the project repository.
To clone, run:
git clone https://github.com/Systems-IIITD/udpping

To build the tools, run make in the udpping folder. It will create two ap-
plications udpping and cping. cping is a tool that can be used to create and
send an ICMP packet to a given destination. It takes the IP address of the
destination as input. You can use it for debugging. cping will need sudo access
to send the ICMP packets.

To debug whether an ICMP packet was received on a different host, I sug-
gest you work on two machines, run Wireshark on the destination machine with
a display filter for ICMP packets. If you use the ping or cping application,
you should be able to see ICMP packets in Wireshark at the destination host.
After you have successfully converted a UDP packet to an ICMP packet, you
can see your packet in Wireshark, too! You have to make all the changes in the
e€1000main.c file. Compile and use the E1000 driver in the same way as you
did in the homework. You are not supposed to make any changes to any other
files in the Linux kernel or the applications in udpping.

To recompile the e1000 module after making your changes, run:
make M=drivers/mnet/ethernet/intel/el1000 from the 1inux-6.16 directory.
To reuse your new implementation,
copy linux-6.16/drivers/net/ethernet/intel/e1000/e1000.ko to your VM,
and reload the driver by running:
sudo modprobe -r e1000 followed by sudo insmod e1000.ko.

You are encouraged to write scripts to make copying and reloading easier
inside the VM. You can also refer to the “PCI/PCI-X Family of Gigabit Ethernet
Controllers Software Developer’s Manual” (available on Google Classroom) for
more details about the software interface of the NIC driver.

6 Experiments

You need to do the following experiments.

Ping Google using: ping www.google.com
Ping Google’s IP address using: ./udpping 142.251.43.100.
Replace 142.251.43.100 with Google’s actual IP address in your experiment.
The ping to Google should work. If it works fine, you should see the following
message:

UDP echo: 142.251.43.100
Congrats: test passed

Try pinging Google again using ping www.google.com to test that the nor-
mal ping stack is unaffected by your driver changes. It should work correctly.

7 How to submit.

Create a design document in the PDF format and answer the following questions
in your design documentation.

1. Briefly explain your design and the key changes in the e1000_main.c.
2. Are you getting the expected output after pinging Google using udpping?

3. Is ping to Google using the ping application work correctly after a suc-
cessful ping to Google using udpping?

4. Write the names and roll numbers of all group members.

Submit €1000main.c and your design documentation. Use the naming
convention for the assignments and homework. Your assignment will not be
evaluated if you don’t follow the submission guidelines.

