Simulating packet drop using the E1000 network
driver

This assignment aims to simulate the packet loss/corruption on the physical
link. In this assignment, you will drop packets inside the E1000 network driver
for a target IP with a given rate.

1 Background

1.1 Big and Little-endian

Big-endian: Store the most significant byte first in the memory.
Little-endian: Store the least significant byte first in the memory.

For example, let’s say we want to store a 4-byte word Oxab12cd87 at location
0x1000.

In Big-endian:

Oxab will be stored at 0x1000.
0x12 will be stored at 0x1001.
Oxcd will be stored at 0x1002.
0x87 will be stored at 0x1003.

In Little-endian:

0x87 will be stored at 0x1000.
Oxcd will be stored at 0x1001.
0x12 will be stored at 0x1002.
Oxab will be stored at 0x1003.

On an Intel CPU, the data is stored in the Little-endian format. In network
headers, the data is stored in Big-endian format, often called network byte
order. For example, an IP address 7.8.9.3 (decimal format) is converted to a
32-bit hexadecimal value 0x07080903. Here, 0x07 is the most-significant byte.
However, if we are to store it in a network header, 0x07 will be stored first,
followed by 0x08, 0x09, and 0x03, respectively. If you read the IP address in the
network header on the CPU, you will see 0x03090807, because it was stored in
Big-endian format; however, the CPU will interpret it in Little-endian format.



8-bytes for UDP
14-bytes minimum 20-bytes minimum 20-bytes for TCP variable length

[ TRANSPORT

Figure 1: A packet with all the headers

1.2 Packet structure

A packet (Figure figurel) at the data-link layer has several headers. The first
14 bytes correspond to the data-link layer (or Ethernet) header. The next is
the network layer (or IP) header. The minimum size of the IP header is 20
bytes. However, it can be more than 20 bytes if certain features are requested.
After that, there is a transport layer header. If the packet is a UDP packet, the
header size is eight bytes. For a TCP packet, the header size is at least 20 bytes
(it can be more than 20 bytes if certain features are enabled).

struct sk_buff facilitates easy access to different headers in a packet. struct
sk_buff provides various fields such as mac_header, network_header, and transport_header
that point to the link-layer, network-layer, and transport-layer headers, respec-
tively. The Linux kernel also provides eth_hdr, ip_hdr, udp_hdr, tcp_hdr rou-
tines to fetch the different headers from struct sk_buff. These routines return
a pointer of type struct ethhdr, struct iphdr, struct udphdr, and struct
tcphdr. These structs allow users to conveniently read/write to different fields
in the corresponding headers. Below are the definitions of structs corresponding
to the various types of packet headers. Here, __bel16 and __be32 indicate 2-byte
and 4-byte values, respectively, in the Big-endian format.

1.3 Data-link layer header (14 bytes)

struct ethhdr {
unsigned char h_dest[6]; // destination mac address
unsigned char h_source[6]; // source mac address
__bel6 h_proto; // 2-byte protocol

s

1.4 Network layer header (minimum 20 bytes)

The actual length of the network header is the value of the ihl field multiplied
by four. The total size of the packet, i.e., length of IP header 4 length of
Transport header + payload size is stored in the tot_len field. The protocol
field stores the type of transport-layer protocol. It’s six for TCP and 17 for
UDP.

struct iphdr {

__u8 ihl:4; // length of header = ihl * 4
_u8 version:4; // 4-bit version
_u8 tos;



__bel6 tot_len; // Entire packet size, header + data
__bel6 id;
__bel6 frag_off;
__u8 ttl; // Hop limit, decremented at each hop
__u8 protocol; // protocol TCP=6, UDP=17
__suni16 check; // header checksum
__be32 saddr; // source IP address
__be32 daddr; // destination IP address
char options[]; // variable length
};

1.5 UDP header (8 bytes)

struct udphdr {

__bel6 source; // source port

__bel6 dest; // destination port

__bel6 len; // length of UDP header + data

__suml6 check; // checksum of UDP header, payload, part of IP header
3

1.6 TCP header (minimum 20 bytes)

The actual length of the TCP header is the value of the doff field multiplied
by four.

struct tcphdr {
__bel6 source; // source port
__bel6 dest; // destination port
__be32 seq; // sequence number
__be32 ack_seq; // acknowledgement number
_ul6 ae:1;
_ul6 resi:1;
_ul6 doff:4; // Length of TCP header = doff * 4
_ulé fin:1
_ulé syn:1
_ulé rst:1
_ul6 psh:1;
1
1
1

_ ; // start comnection

_ul6 ack:1; // acknowledgment valid
_ul6 urg:
__ul6 ece:1;
__ul6 cwr:1;
__bel6 window; // window size
__suml6 check; // checksum of TCP header, data, part of IP header
__bel6 urg_ptr;
char options[]; // variable length
};



1.7 E1000 device driver

The main job of the E1000 device driver is to facilitate the sending and receiving
of packets using transmit and receive rings, as discussed in the lecture. In this as-
signment, the relevant routines are e1000_xmit_frame and e1000_clean_tx_irq.

e1000_xmit_frame takes an argument skb of type struct sk_buff as input.
skb contains pointers to the various headers of the actual packet, which is ready
for transmission. This routine updates an available descriptor in the transmit
ring with the physical address of the packet and updates the TDT register, which
allows the NIC to transmit the packet.

e1000_clean _tx_irq is called as a part of the interrupt handling for sending
packets. Once the packet has been sent, the NIC notifies the device driver by
sending an interrupt. This routine notes that the transmit descriptors can now
be available for future transmits. It may also free the buffers used for the sent
packets.

2 User Tools

You are provided three applications: server, client, and block. server is
a TCP server that binds itself to all available network interfaces on a host.
client is a TCP client that takes the IP address of the host machine running
the server as input, and sends 100000 64-byte packets to the server. The server
terminates after receiving all the packets from the client. The block application
takes an IP address, say 172.23.65.98, and a drop rate, say 15, as input. For
convenience, we will use 172.23.65.98 and 15 as placeholders for the user-
supplied IP address and the drop rate, respectively. After receiving the inputs,
block instructs the network driver to drop packets destined to 172.23.65.98
at a rate of 15%. Because the E1000 driver is not a standalone module in
the Linux Kernel, it’s hard to pass direct arguments from a user application.
Therefore, block creates and sends a UDP message of five bytes (containing
the arguments) to a fixed IP address 100.100.100.100. The first four bytes of
the UDP message contain 172, 23. 65, 98, i.e., the bytes corresponding to the
user-supplied IP address. The fifth byte is the drop rate 15.

3 Implementation

In this assignment, you need to monitor all ongoing packets in the E1000 driver,
and if a UDP packet is destined to 100.100.100.100, record the IP address,
say x, and drop rate, say r, in the message to drop the future packets to x with
the rate r. You need to implement everything in the e1000_main.c file. You
can interpret all ready-to-send packets in e1000_xmit_frame. Notice that after
dropping a packet, you may need to release the buffer, as done in the interrupt
handler. The TCP protocol at the transport layer should automatically recover
from the packet loss.



If your implementation is correct, you can test it by running the server
application on the host machine and the client application in the virtual ma-
chine. On the virtual machine, before invoking client try dropping packets to
your host machine by running ./block 172.23.65.98 5, where 172.23.65.98
is the IP address of your host machine. If everything works perfectly, it will print
€¢100001 packets received in ... milliseconds’’. You can experiment
with different drop rates and monitor the total time.

In your implementation, you can drop packets for only one IP address at
a given point. For example, after executing ./block 172.23.65.98 5, if you
execute ./block 192.3.23.11 10, the driver will stop dropping the packet for
172.23.65.98; instead, it will now drop packets for 192.3.23.11 at a rate of
10%. You can also change the drop rate by executing ./block 192.3.23.11
15. From this point onward, the driver will drop packets to 192.3.23.11 at a
rate of 15%.

4 Environment

For this assignment, you need to clone the project repository.
To clone, run: git clone https://github.com/Systems-IIITD/usertools.

To build the tools, run make in the usertools folder. It will create three
applications server, client, and block. You have to make all the changes
in the e1000_main.c file. Compile and use the E1000 driver in the same way
as you did in the homework. You are not supposed to make any changes to
any other files in the Linux kernel or the applications in usertools, except for
experimenting with the receive buffer (discussed in the next section).

To recompile the e1000 module after making your changes, run:
make M=drivers/mnet/ethernet/intel/e1000 from the 1inux-6.16 directory.
To reuse your new implementation,
copy linux-6.16/drivers/net/ethernet/intel/e1000/e1000.ko to your VM,
and reload the driver by running:
sudo modprobe -r 1000 followed by sudo insmod e1000.ko.

You are encouraged to write scripts to make copying and reloading easier
inside the VM. You can also refer to the “PCI/PCI-X Family of Gigabit Ethernet
Controllers Software Developer’s Manual” (available on Google Classroom) for
more details about the software interface of the NIC driver.

5 Experiments

You need to do the following experiments. We will assume the IP address of
your host is 172.23.65.98 in this discussion. Replace 172.23.65.98 with the IP
address of your host in the actual experiment.



Run server using .server on the host. Drop 1% packets to the host by run-
ning ./block 172.23.65.98 1 inside the VM. Record the number of retrans-
mitted segments before sending packets using netstat -s |grep retransmitted.
Run client inside the VM using ./client 172.23.65.98. Record the num-
ber of retransmitted segments after sending packets using netstat -s |grep
retransmitted. Report the transfer time reported by the server, the number of
retransmitted segments before and after transmitting the packets using client.
Repeat the same experiments with 0%, 5%, 10%, and 15% drop rates.

Ping Google using ping www.google.com. Block Google’s IP address using
./block 142.251.43.100 100. Replace 142.251.43.100 with Google’s actual
IP address in your experiment. The ping to Google should not work.

Change the buf size in server.c at Line-21 to 128, i.e., replace buf[64] with
buf[128]. Recompile the server by running make. Is the number of packets
received by the server with and without this change the same?

6 How to submit.

Rename e1000_main. c to groupNumber_studentRollNumber_studentName_e1000_main.c.
Replace groupNumber with your group’s actual ID, studentRollNumber with

your roll number, and studentName with your first name. Create a design doc-

ument in the PDF format and answer the following questions in your design
documentation.

1. Briefly explain your design and the key changes in the e1000_main.c.
2. What is the transfer time without dropping any packets?

3. What was the number of retransmitted segments before sending packets
in the above experiment?

4. What was the number of retransmitted segments after sending packets in
the above experiment?

5. What is the transfer time with a 1% packet drop?

6. What was the number of retransmitted segments before sending packets
in the above experiment?

7. What was the number of retransmitted segments after sending packets in
the above experiment?

8. What is the transfer time with a 5% packet drop?

9. What was the number of retransmitted segments before sending packets
in the above experiment?

10. What was the number of retransmitted segments after sending packets in
the above experiment?



11. What is the transfer time with a 10% packet drop?

12. What was the number of retransmitted segments before sending packets
in the above experiment?

13. What was the number of retransmitted segments after sending packets in
the above experiment?

14. What is the transfer time with a 15% packet drop?

15. What was the number of retransmitted segments before sending packets
in the above experiment?

16. What was the number of retransmitted segments after sending packets in
the above experiment?

17. Does ping to Google work after dropping 100% packets to it?

18. Did you notice any change in the number of received packets by the server
after changing the buffer size to 1287 If yes, what is the reason?

19. Write the names and roll numbers of all group members.

Rename the design documentation as groupNumber_studentRollNumber_studentName.pdf.
Replace groupNumber with your group’s actual ID, studentRollNumber with
your roll number, and studentName with your first name. Submit both the
files. All members of the group are required to submit the files. Your assign-
ment will not be evaluated if you don’t follow the submission guidelines.



