
Inter-client communication via the server

In this homework, you are provided with a multiclient-server implementation. The clients can
send messages to the server, and the server can broadcast messages to the clients. You need
to extend this implementation to allow one client to talk to one or more clients.

Get and build the assignment using:

git clone https://github.com/Systems-IIITD/CN
cd hw_cs
make

It'll create two files: server and client.
./server starts the server
./client starts the client

When you enter something on a client's terminal, it should be displayed on the server's terminal.
When you enter something on the server's terminal, it must be printed on all client terminals.

When a server receives a message from the client, the recv_message routine (as described

below) in the server_helper.c is called.

void recv_message(char *msg, int len, int client_id, int *valid_ids, int num_clients)

The first argument is the message.
The second argument is the length of the message.
The third argument is an integer ID corresponding to the client.
The fourth argument is an array of valid client IDs. If valid_ids[cid] is -1, it means the

client ID cid is invalid.

The fifth argument is the size of the valid_ids array. It means the maximum value of a valid

client ID can be num_clients - 1.

You can use the send_message API for sending messages to other clients.

void send_message(char *msg, int len, int dst_id, int src_id);

The first argument is a character array, msg, that needs to be sent.

The second argument is the length of the array msg.

The third argument is the destination client ID.
The fourth argument is the source client ID. If the source is the server, you should use
SERVER_ID as src_id.



To facilitate inter-client communication, we require that client messages follow a specific format.

The client can obtain the list of all the valid client IDs using the following message.
LIST

If a client wants to send "Hello World" to client IDs 5, 7, and 8, it can use the following format.
DATA 3 5 7 8: Hello World

The message starts with DATA followed by a space and the number of recipients, followed by a
space and the IDs of each of the recipients separated by spaces, followed by a colon(:), a
space, and the message.

It means that in the recv_message, you can receive data that either starts with "DATA" or

"LIST". You can use sscanf or any other library calls to parse the string, and use the

send_message API to send messages as required. The valid_ids and num_clients

arguments can be used to create a list of valid clients.

Submission:
Implement everything in the server_helper.c. Create a design documentation with the

following information.

Start the server.
Start five clients from different terminals.

● What is the output on all clients' and the server's terminals when the fifth client enters
LIST

● What is the output on all clients' and the server's terminals when the fifth client enters
DATA 3 3 1 2: hello world

● What is the output on all clients' and the server's terminals when the fifth client enters
DATA 1 0: hello world

Submit server_helper.c and your design documentation. Use the submission guidelines

for the assignments and the homework.


