Printing DNS messages

The goal of this assignment is to understand the DNS message compression scheme.

Background:

A DNS message has a DNS header and four sections. The message starts with a DNS header
followed by the questions, answers, authority, and additional records sections. The structure
of a DNS header is as follows.

struct dns_header {
__bel6id;
__belé6 flags;
__bel6 num_ques; // # questions
__bel6 num_ans; //#answer RRs
__bel6 num_auth; // # authority RRs
__bel6 num_add; //# additional RRs

|3

Here, num_ques, num_ans, num_auth, and num_add correspond to the number of
entries in the questions, answers, authority, and additional records sections. Each entry in
the question section begins with a name followed by a structure shown below.

struct dns_q {
__belb6 type;
__bel6class;

5

Each entry in the answers, authority, and additional record sections begins with a name
followed by a structure shown below. Here, rdata is a variable-length byte stream whose
length is stored in the field rlen.

struct dns_rr {
__belb6 type;
__bel6class;
__be32 ttl;
__bel6rlen;
unsigned char rdata[];

|

The names are stored in a compressed format.

Let’s first discuss how an uncompressed name is stored. Let’s say we want to store
www.example.com. In a DNS message, this string is divided into labels, where each label is a
substring separated by a dot. In www.example.com there are three labels: www, example,
and com.




The labels are stored as follows.
3 w w w 6 e X A M p |l e 3 ¢ o m O

Each label is preceded by its length. A length of zero indicates the end of the labels. The
length of a label is restricted to 63. Therefore, at most six bits are required to store the
length of a label; however, 8 bits (1 byte) are used to store the length.

Compression:

During storing a name, if the remaining labels already exist (in the same sequence
terminated by a label of zero length) in the DNS message starting at offset X from the start of
the DNS message, then instead of storing the remaining labels, X is stored.

Let’s consider the following example. We want to store the following names. Let’s say the
offset of the first name with respect to the start of the message is 0x10.

l.gtld-s.net.
j-gtld-s.net.
gtld-s.net.

The first name is stored as

1 1 6 g t I d - S 3 n e t O

The second name is stored as

1 htons(0xC012)

Notice that the rest of the labels are already available at offset 0x12. The size of an offset in
a DNS message is 16 bits. In order to distinguish between an offset and the length of a label,
the top two bits of the offset are set to one (remember that the two bits of the length of a
label are always zero because the length can fit in six bits). The offset is stored in the Big-
endian format. htons converts host order to the network order (which is Big-endian).

The third name is stored as

htons(0xC012)

Notice that the entire name is available at offset 0x12.

In this homework, you need to write a routine, print_helper, which will read labels
corresponding to a name, add dots between labels, and store them in a buffer. The routine
will return the address of the rest of the record after skipping the bytes corresponding to the
name. For example, for the first name, 14 bytes will be skipped to get the address of the rest
of the record. Similarly, for the second and third names, four and two bytes will be skipped.



The skeleton code provided to you calls the print_name routine, which uses print_helper to
read the name in a buffer and to get the address of the rest of the record (say X).
print_name returns X to the caller after printing the string.

After getting the address after skipping the name, the skeleton code prints the various fields
in the record, except rdata. After the above print statement, you need to initialize the
variable start with the address of the next record in the corresponding section. Notice that
the length of rdatais rlen, which also needs to be skipped for the records in the answers,
authority, and additional records sections.

Skelton code:

Clone the git repository using

git clone https://github.com/Systems-1lIITD/CN_DNS

Run make to compile pcap.c.
Run sudo ./pcap to run the tool.

The pcap application uses the pcap library to read all packets from the network interface
card. It then filters the UDP packets corresponding to the DNS messages. The DNS server
uses port 53, which is used to filter DNS messages. You need to implement the
print_helper routine and the skipping logic as discussed before.

Submission:

Follow the naming format for homework and assignments. You need to submit the pcap.c
file along with a design documentation that prints the DNS record printed by your modified
pcap application, when you run dig @198.41.0.4 www.example.com from another terminal.

A correct output would look something like this:

START

id: 26682 flags: 33024 num_questions: 1 num_answers: 0 num_authority: 13
num_additional: 27

printing question section
www.example.com. type: 1 class: 1

printing answer section

printing authority section
com. type: 2 class: 1 ttl: 2a300 len: 14
com. type: 2 class: 1 ttl: 2a300 len:
com. type: 2 class: 1 ttl: 2a300 len:
com. type: 2 class: 1 ttl: 2a300 len:

EE S



com. type: 2 class: 1 ttl: 2a300 len:
com. type: 2 class: 1 ttl: 2a300 len:
com. type: 2 class: 1 ttl: 2a300 len:
com. type: 2 class: 1 ttl: 2a300 len:
com. type: 2 class: 1 ttl: 2a300 len:
com. type: 2 class: 1 ttl: 2a300 len:
com. type: 2 class: 1 ttl: 2a300 len:
com. type: 2 class: 1 ttl: 2a300 len:
com. type: 2 class: 1 ttl: 2a300 len:

B T S S )

printing additional section

l.gtld-servers.net. type: 1 class: 1 ttl: 2a300 len: 4
l.gtld-servers.net. type: 1c class: 1 ttl: 23300 len: 10
j.gtld-servers.net. type: 1 class: 1 ttl: 2a300 len: 4
j.gtld-servers.net. type: 1c class: 1 ttl: 2a300 len: 10
h.gtld-servers.net. type: 1 class: 1 ttl: 2a300 len: 4
h.gtld-servers.net. type: 1c class: 1 ttl: 2a300 len: 10
d.gtld-servers.net. type: 1 class: 1 ttl: 2a300 len: 4
d.gtld-servers.net. type: 1c class: 1 ttl: 2a300 len: 10
b.gtld-servers.net. type: 1 class: 1 ttl: 2a300 len: 4
b.gtld-servers.net. type: 1c class: 1 ttl: 2a300 len: 10
f.gtld-servers.net. type: 1 class: 1 ttl: 2a300 len: 4
f.gtld-servers.net. type: 1c class: 1 ttl: 2a300 len: 10
k.gtld-servers.net. type: 1 class: 1 ttl: 2a300 len: 4
k.gtld-servers.net. type: 1c class: 1 ttl: 2a300 len: 10
m.gtld-servers.net. type: 1 class: 1 ttl: 2a300 len: 4
m.gtld-servers.net. type: 1c class: 1 ttl: 2a300 len: 10
i.gtld-servers.net. type: 1 class: 1 ttl: 2a300 len: 4
i.gtld-servers.net. type: 1c class: 1 ttl: 2a300 len: 10
g.gtld-servers.net. type: 1 class: 1 ttl: 2a300 len: 4
g.gtld-servers.net. type: 1c class: 1 ttl: 2a300 len: 10
a.gtld-servers.net. type: 1 class: 1 ttl: 2a300 len: 4
a.gtld-servers.net. type: 1c class: 1 ttl: 2a300 len: 10
c.gtld-servers.net. type: 1 class: 1 ttl: 2a300 len: 4
c.gtld-servers.net. type: 1c class: 1 ttl: 2a300 len: 10
e.gtld-servers.net. type: 1 class: 1 ttl: 2a300 len: 4
e.gtld-servers.net. type: 1c class: 1 ttl: 2a300 len: 10
type: 29 class: 1000 ttl: O len: O

END




