
Type and spatial safety in SafeC

1 Introduction

This exercise aims to enforce spatial and a weaker type safety for the C language.
Our tool is called SafeC. SafeC provides “mymalloc” and “myfree” API for
memory management. “mymalloc” routine keeps track of the size and type
information of the object for dynamic enforcement of memory safety. In this
assignment, we will ensure spatial safety and verify the validity of pointer fields
after a memory write.

2 alloca to mymalloc [4 marks]

Whenever a stack address or something derived from a stack address is passed
to a routine or stored in memory, convert the corresponding alloca instruction
to mymalloc. Also, insert myfree API to free the memory whenever the alloca

that was transformed in the previous step goes out of scope.
Consider the following example.

void bar() {

1. int arr [5];

2. int *a = arr;

3. a++;

4. foo(a, 3);

}

In this example, the parameter a at line-4 is a stack address. Transform this
code as follows.

void bar() {

int *arr = mymalloc (20);

int *a = arr;

a++;

foo(a, 3);

myfree(arr);

}

1

Similarly, if a stack address is stored in a memory location, convert the
corresponding stack allocation to mymalloc and manually reclaim the memory
using myfree. You can ignore the stack addresses passed to the library routines
during this analysis.

3 Disallowing out-of-bounds pointers [4 marks]

At runtime, if an out-of-bounds pointer is passed to a function, or returned from
a function, or stored in memory; abort the program. Consider the following
example.

1. void foo() {

2. int *arr = mymalloc (20);

3. f1(&arr[48], 3);

4. int **ptr = mymalloc (8);

5. *ptr = &arr [48];

6. f2(ptr , 3);

7. return &arr [48];

8. }

10. void f1(int *arr , int offset) {

11. arr[offset] = offset;

12. }

In this example, an out-of-bounds pointer (&arr[48]) is being passed to f1

(at line-3), stored in memory (at line-5), and returned from function (at line-7).
After these events, the out-of-bound pointer may be visible to other parts of
the code. For example, memory access at line-11 is an out-of-bounds access. It
is possible that the out-of-bounds pointer is actually pointing to a valid object
(i.e., other than the object allocated at line-2). However, at line-10, we can’t
infer that the argument arr was actually derived from the object allocated at
line-2. To prevent this, you need to add dynamic checks to abort the program
in all these cases.

To compute the bounds for &arr[48], you first need to compute the base
arr. To compute, arr, starting from &arr[48], you can recursively backtrack
all the getelementptr and bitcast operations until you find a definition that
is not a getelementptr or bitcast instruction. Once you statically identify the
base, you can compute the real base from the statically inferred base using the
SafeGC API you implemented for the previous assignment. You can ignore the
out-of-bounds pointers passed to the library routines during this analysis.

4 Adding bounds check [2 marks]

Before every memory access, insert a dynamic check to abort the program if the
memory access is not within the bounds. For example, consider the following
case.

2

void bar(int *arr , int idx) {

arr[idx] = 0;

}

In this example, the memory access size is 4-bytes, and the statically inferred
base corresponding to the memory access is arr. You can find the actual base
from the statically inferred base using the SafeGC API. The upper bound of
the object can be computed after adding the size of the object (obtained from
the object header) to the base address. For stack and global objects, you can
compute the size from the statically available information. The bounds checking
logic aborts the program if [arr, arr + access size - 1] is not within the bounds
of the object.

5 Allocator

We are using the SafeGC allocator for SafeC. mymalloc routine inserts an object
header before every object, which contains the size and type information of the
object. mymalloc always returns an object of type i8*. The typeassigner

pass inserts code after mymalloc to store the type of the allocated object in the
object header. SafeC computes a bitmap to represent the type of an object. If
the type doesn’t contain a pointer field, then the bitmap is set to zero; otherwise,
the bitmap is computed as follows.

SafeC divides the type into chunks of eight-byte fields starting from the top.
Every field has a corresponding bit in the bitmap. The bit position of the first
field in the bitmap is zero; the second field is one, and so on. A set bit in
the bitmap represents a pointer, and a bit value zero represents a non-pointer.
For types with pointer fields, the nth bit in the bitmap is set to one (where n

is the number of eight-byte fields) to identify the size of the type at runtime.
SafeC does not support types (with pointer fields) of size more than ‘‘63 *

8’’ bytes. This scheme works because, by default, LLVM generates eight-byte
aligned offsets for pointer fields in a composite data structure. However, the
application can use type attributes to override the default behavior. SafeC only
supports applications that satisfy the above constraint.

struct A {

unsigned long long a;

unsigned long long *b;

unsigned long long c;

unsigned long long *d;

unsigned long long e;

};

For example, the bitmap corresponding to struct A is 101010 (0x2a). You
can refer to the computeBitMap routine in TypeAssigner.cpp for the bitmap
computation. TypeAssigner.cpp inserts mycast calls after the object allocation
that stores the type in the object header of the allocated object.

3

6 Write barriers [3 marks]

After every write to an object, you need to insert a write barrier. Write barrier
checks if any pointer field was updated due to the write. If yes, then it asserts
that the updated value is either NULL or points to a valid object. The write
barrier aborts the program if the above assertion fails. You can identify whether
a field is a pointer or not using the type information stored in the object header.
For a stack-allocated object, you can obtain the type from the corresponding
alloca instruction.

Consider the following example,

struct A {

int *fld1;

unsigned long long fld2;

int *fld3;

unsigned long long fld4;

};

void foo(int offset) {

1. struct A *a = (struct A*) mymalloc(sizeof(struct A));

2. a->fld1 = mymalloc (4);

3. a->fld3 = mymalloc (4);

4. char *ptr = (char*)a;

5. a[2] = 0;

6. a[8] = 0;

}

In this example, the write at line-5 updates fld1 (a pointer field) of the object
allocated at line-1. Therefore, the write barrier checks whether a->fld1 still
points to a valid object or contains a NULL value after the update. However,
the write at line-6 updates a non-pointer filed (fld2) of the object, so the
write barrier doesn’t check anything for this update. Notice, a single write
can partially update multiple fields if the starting address of the write is some
internal address of a field.

7 Environment

Sync your local repository by running git pull origin master. To build
the project, follow the steps in the README.md file. You have to implement
LLVM specific code in the ‘‘llvm/lib/CodeGen/SafeC/MemSafe.cpp’’ file. The
other routines that are called by your instrumented code need to be implemented
in the ‘‘support/SafeGC/support.c’’ file.

8 Test cases

‘‘tests/PA4’’ folder contains some test cases. Run “make” in the “tests/PA4”
folder to compile the test cases. You can run a test case by manually running

4

the generated executable. You can find sample test inputs in the makefile. The
makefile uses llvm-dis tool to print the LLVM IR in a file. Please feel free to
add more test cases to test your implementation.

9 Tools

You can use cscope, ctags, and vim to navigate the source code. “Sublime
text-3” also works well with LLVM.

10 Other resources

You can refer to “https://llvm.org/doxygen/” for quick reference to the
classes in LLVM. E.g., to search all the public functions in the LLVM Function

class, type “llvm Function” in the google search bar for a doxygen page related
to the Function class in LLVM.

11 Other LLVM details

By this time, you might have already explored several APIs in LLVM. The best
way to start this assignment is to go through llvm/lib/CodeGen/SafeC/TypeAssigner.cpp.
You can reuse some of the code from there in your implementation. TypeAssigner.cpp
also inserts calls to mycast; you can insert routines that implement runtime
checks in a similar way. You can use isLibraryCall implementation in the
‘‘llvm/lib/CodeGen/SafeC/MemSafe.cpp’’ file to check if a call instruction
is actually a library call. Please feel free to post your query on the classroom
page if you need any help with the LLVM APIs.

11.1 How to submit

Create a zip folder that contains MemSafe.cpp and support.c. Upload the zip
folder to the submission link.

5

https://llvm.org/doxygen/

	Introduction
	alloca to mymalloc [4 marks]
	Disallowing out-of-bounds pointers [4 marks]
	Adding bounds check [2 marks]
	Allocator
	Write barriers [3 marks]
	Environment
	Test cases
	Tools
	Other resources
	Other LLVM details
	How to submit

