
Homework-4

Figure 1: Control flow graph.

• Convert the CFG in Figure 1 into a minimal SSA form. Show all inter-
mediate computations, i.e., dominator tree, dominance frontiers, liveness,
placement of phi nodes, and reaching definitions. [15]

• Consider a routine foo below that takes the pointer argument arr as
input.

void foo(int *arr);

Let’s say arr is pointing to object A. There are no other references to A

stored anywhere else in the program except the argument arr. You can
assume that at the start of foo, the program can’t compute the address
of A from any other memory location or register except the value of arr.
Write a static analysis for the LLVM IR to determine if object A can be

1

updated before returning from foo. For example, the statement “arr[i]
= 20” updates the object A, whereas the statement “t = arr[i]” doesn’t
update A. In LLVM IR, the store instruction is used to update the content
of a memory location. You need to use the LLVM IR in the SSA form
that uses virtual registers and phi-nodes whenever possible (instead of
using stack locations for every variable). Your static analysis should work
for any definition of foo. [20]

• Discuss why the following implementation of the write-barrier is incorrect.
[10]

void write_barrier(void **pp, void *p) {

if (concurrent mark is running) {

if (pp reached-bit is 1 and p reached-bit is 0) {

set the reached-bit of p to 1

add p to WB_Unscanned list

}

}

*pp = p;

}

• The problem with the above implementation can be fixed by inserting locks
in the concurrent mark and write barrier algorithms. Insert locks in the
concurrent mark algorithm discussed in the class and the write barrier

routine in the previous question to solve the concurrency issue. You are not
supposed to change the other parts of the algorithm. Write the modified
algorithm. [15]

1 How to submit

Submit your handwritten answers in class before the lecture.

2

	How to submit

