
CGuard: Scalable and Precise Object Bounds Protection for C

Piyus Kedia
IIIT Delhi
India

Rahul Purandare
UNL
USA

Udit Agarwal∗

UBC
Canada

Rishabh
GGSIPU
India

ABSTRACT

Spatial safety violations are the root cause of many security attacks

and unexpected behavior of applications. Existing techniques to

enforce spatial safety work broadly at either object or pointer gran-

ularity. Object-based approaches tend to incur high CPU overheads,

whereas pointer-based approaches incur both high CPU and mem-

ory overheads. SGXBounds, an object-based approach, provides

precise out-of-bounds protection for objects at a lower overhead

compared to other tools with similar precision. However, a major

drawback of this approach is that it cannot support address space

larger than 32-bit.

In this paper, we present CGuard, a tool that provides precise

object-bounds protection for C applications with comparable over-

heads to SGXBounds without restricting the application address

space. CGuard stores the bounds information just before the base

address of an object and encodes the relative o�set of the base

address in the spare bits of the virtual address available in x86_64

architecture. For an object that cannot �t in the spare bits, CGuard

uses a custommemory layout that enables it to �nd the base address

of the object in just one memory access. Our study revealed spatial

safety violations in the gcc and x264 benchmarks from the SPEC

CPU2017 benchmark suite and the string_match benchmark from

the Phoenix benchmark suite. The execution time overheads for

the SPEC CPU2017 and Phoenix benchmark suites were 42% and

26% respectively, whereas the reduction in the throughput for the

Apache webserver when the CPUs were fully saturated was 30%.

These results indicate that CGuard can be highly e�ective while

maintaining a reasonable degree of e�ciency.

CCS CONCEPTS

• Security and privacy→ Systems security.

KEYWORDS

Spatial safety, Bu�er over�ow

ACM Reference Format:

Piyus Kedia, Rahul Purandare, Udit Agarwal, and Rishabh. 2023. CGuard:

Scalable and Precise Object Bounds Protection for C. In Proceedings of

the 32nd ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3597926.3598137

∗A part of this work was done while the author was at IIIT Delhi

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598137

1 INTRODUCTION

Spatial safety violations are the root cause of many security attacks

[10, 11, 15, 17, 22, 31, 34, 38, 39]. Attackers can exploit spatial safety

bugs to hijack an application’s control �ow or steal sensitive in-

formation (e.g., passwords). Beyond security issues, spatial safety

is important to ensure expected application behavior. For exam-

ple, unintentionally accessing an out-of-bounds location can cause

unexpected behavior or program crashes that are hard to debug.

Spatial safety is just one aspect of reliability. Managed languages,

such as Java and C#, o�er better reliability by providing complete

(spatial and temporal) memory and type safety. However, C does

not guarantee any of these safeties by default. Despite the lack of

memory safety, C and C++ are still preferred over managed lan-

guages for systems applications because managed languages are

less e�cient. Consequently, many performance-sensitive applica-

tions are still vulnerable to security exploits and are therefore not

reliable. In this work, we propose a mechanism to enforce spatial

safety for C applications.

Several techniques have been proposed to enforce spatial safety

for C/C++ applications. At a high level, these techniques can be

categorized into pointer-based [9, 16, 23, 29, 30, 40] and object-based

[8, 19–21, 24, 26, 36, 42] approaches.

Pointer-based approaches track the bounds of sub-objects and

can detect sub-object over�ows. Evenwith hardware support [4, 18],

these approaches incur high CPU and memory overheads because

they need to store and update bounds information for every pointer.

Oleksenko et al. [33] have reported around 75% CPU and 125%

memory overheads for SPEC benchmarks for the Intel MPX [4]

implementation of the ICC compiler.

In object-based approaches, spatial safety checks ensure that

the memory access using a pointer is within the heap/stack/global

allocation bounds. These approaches have low memory overheads

because they do not need to store the bounds for every pointer.

Finding the base or limit of an object using a pointer is challenging

because the pointer can be an internal address of an object. Initial

approaches [19, 24, 36] used a splay-tree-based lookup to check if

the pointer points to a location within object bounds. For e�ciency,

later works [8, 20, 21, 42] enforced spatial safety at loose (or impre-

cise) allocation bounds rather than the actual allocation bounds.

These works pad the actual allocation size to satisfy an alignment

property and keep track of alignment instead of the actual alloca-

tion size. An important drawback of these approaches is that they

allow applications to access the padded area that is not within the

actual bounds of the objects. This would allow unintended behavior

that may remain undetected.

Our goal is to enforce checking for the actual bounds of the object,

thereby providing precise object-bounds protection. SGXBounds

[26] is so far the most e�cient technique (41% and 55% CPU over-

heads inside and outside the SGX enclaves [5, 28] for SPECCPU2006)

that provides precise object-bounds protection, but it restricts the

1307

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3597926.3598137
https://doi.org/10.1145/3597926.3598137

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Piyus Kedia, Rahul Purandare, Udit Agarwal, and Rishabh

OBJECTSIZE

POINTERTAG

Figure 1: Object layout (top) and pointer layout (bottom) in a

general case. Here, the pointer is pointing to some internal

�eld in the object (shown by the arrow). The tag contains the

relative address with respect to the base address of the object.

The size is stored just before the base address.

application’s usable address space to 32-bit on a 64-bit platform.

SGXBounds uses the remaining 32 bits to store the upper bound of

the object. This allows SGXBounds to compute the upper bound

directly from the pointer itself without any expensive search. The

fundamental weakness of this approach is that it cannot support

larger address space because the upper bound cannot �t in the un-

used bits of the virtual address. As a consequence, the application’s

address space gets restricted to 32-bit.

We propose CGuard, a tool that provides object-bounds protec-

tion without restricting the virtual address space. Figure 1 shows

the layout of an object and pointer in our scheme in a general case.

CGuard stores the size of an object before the base address of

the object and attaches a tag to every pointer to e�ciently locate

the base address. CGuard uses the spare 16-bits of a virtual ad-

dress available in the x86_64 hardware to store the tag. In the tag,

CGuard stores the relative o�set of the pointer with respect to the

base address of the object referred to by the pointer. To �nd the

base address, CGuard simply subtracts the o�set from the pointer

value. For objects that cannot �t in the spare bits, CGuard uses

a custom allocator that allows it to �nd the base of an object in

just one memory access. A major challenge in our design is that,

unlike SGXBounds, CGuard needs to update the o�set in the tag

on every pointer arithmetic. CGuard performs static analysis to

reduce the number of tag updates. The mean CPU and memory

overheads incurred by CGuard for SPEC CPU2017 are 42.1% and

1.1%, respectively.

Spatial safety mechanisms for managed languages are well un-

derstood. The size of an object is stored along with the object.

Managed languages do not allow pointer arithmetic, enabling the

mechanisms to discover the size of the object at all program points

statically. On the other hand, C allows programmers to create inte-

rior pointers, store them in memory, pass them to other routines,

and return them to a caller. This makes the static tracking of base

pointers very hard. In our approach, the tag information needs to be

updated only if a statically known potential interior pointer escapes

the static scope. Thus our scheme allows programmers to control

the overhead of spatial safety. If the usage of interior pointers is

restricted to the static scope, our tagged pointers are equivalent

to normal pointers, and the spatial safety handling mechanism is

similar as in the case of a managed language.

AddressSanitizer [37] detects sequential over�ows and under-

�ows; and some use-after-free bugs at low overhead. The tool has

already been integrated into GCC and LLVM compilers. It tracks

the validity of stack, heap, and global objects using shadow memory.

For every eight-byte of main memory, one byte of shadow mem-

ory is used to track its validity. The shadow memory is kept at a

1. int* bar(int *arr , int i, int **var ,

2. struct node *n) {

3. int *newarr = *var;

4. arr[i] = 200;

5. newarr[i] = 40;

6. if (newarr == arr + 1)

7. n->field_i = 0;

8. return &arr[i];

9. }

10. void foo(int i, int **var) {

11. int x[100];

12. struct node n;

13. *var = &x[6];

14. *var = bar(&x[5], i, var , &n);

15. }

Figure 2: Code snippet to discuss the overview of CGuard.

constant o�set from the corresponding main memory, and thus

checking the validity of a memory address before the access is

very e�cient. To detect over�ows, AddressSantizer inserts extra

memory blocks, redzones, around every object, marks them invalid

in the shadow memory, and then tracks access to them. However,

this scheme cannot detect out-of-bounds accesses that jump the

redzones. AddressSanitizer detects use-after-bugs by putting the

freed region into quarantine for some time. If access to a free

object happens during quarantine, then it’s a use-after-free bug. We

compared CGuard also with AddressSanitizer because it performs

better than SGXBounds in a normal unconstrained environment.

In summary, we make the following contributions.

(1) An approach based on pointer tagging to provide object-bounds

protection for C applications at low overheads without restricting

the application address space.

(2) An optimization and its evaluation that eliminates the need

for bounds checking for structure accesses that are used similar to

objects in managed languages.

(3) A tool, CGuard, based on LLVM and its performance evaluation

using real world benchmarks.

(4) Detection and reporting of bugs in the SPEC CPU2017 and

Phoenix-2.0 benchmark suites.

2 DESIGN

2.1 Overview

CGuard inserts an object-header before the object’s base address

to store the object’s size. To compute the object bounds, we need

to �nd the base address of the object at runtime.

In the code snippet depicted in Figure 2, the argument arr in bar

is an interior pointer. To compute the bounds of arr at line-4, we

need to �nd the base address of arr. To locate the base address, we

store the o�set from the base address in the tag area of the pointer.

Here, the tag area of argument arr contains value 20. Using this

information, CGuard can compute the base address by simply

subtracting o�set (20) from the virtual address of arr. CGuard

does not update the tag area for every pointer. For example, at line-

4, after computing the address of arr[i] for the memory access,

1308

CGuard: Scalable and Precise Object Bounds Protection for C ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

CGuard does not need to update the tag because it statically knows

that arr and &arr[i] belong to the same array, and it can compute

the base address from the argument arr at line-1. We call arr the

static-base of &arr[i]. Similarly, the static-base of &newarr[i] at

line-5 is newarr at line-3. CGuard statically analyzes the routine

to identify the static-base for every pointer. Whenever a pointer

escapes the static scope, it may become a static-base in other parts

of the program. For example, at line-13, &x[6] leaves the static

scope and becomes the static-base at line-3. Therefore, we update

the tag before storing &x[6] in var at line-13. Similarly, CGuard

updates the tag of &x[5] (at line-14) and &arr[i] (at line-8) before

passing to and returning from the bar routine. CGuard does not

need to update the tag while storing the return value of bar in

var at line-14. This is because the return value of a function is a

static-base, and it already has the correct o�set in its tag area.

A problem with this approach is that the maximum o�set gets

restricted by the number of bits in the tag �eld (CGuard uses 15

bits to store the o�set). For objects that cannot �t into 15 bits,

CGuard uses a segmented heap. In this case, the base of the object

is computed using the alignment property of the segmented heap.

Another problem is that C does not distinguish between a pointer

and an array. For example, argument n in bar at line-2 is a pointer

to a structure element; however, CGuard needs to add bounds

check at line-7 before accessing the structure �eld because it could

be an array of structures. On the contrary, in managed languages,

the type-system can distinguish between an object and an array of

objects. Therefore, object accesses do not need to perform explicit

bounds checks. To eliminate the need for these bound checks, we

expect all static-bases to point to amemory area that is large enough

to store at least one element of the corresponding array. We call this

property the size-invariant property. In the above example, CGuard

requires the argument n to point to a memory area that is at least

“sizeof(struct node)” long. We found that for most benchmarks,

this property holds. In our scheme, programs that do not satisfy

this property may have to pay an additional performance penalty.

In our scheme, changing the pointer layout further complicates

the pointer comparison and subtraction operations. Now, the same

pointers may have di�erent o�sets in their tag areas depending

on their static bases. For example, the equality checks at line-6

will fail because newarr and arr contain di�erent o�sets in their

tag areas. To handle this correctly, CGuard resets the tags in the

pointer operands during these operations. CGuard also resets the

tag before every memory access. CGuard uses custom wrappers to

invoke system library routines. These wrappers reset the tag �eld

from the pointer arguments because the unmodi�ed library does

not understand CGuard’s pointer layout. Finally, CGuard inserts

dynamic checks before memory accesses to abort the program if

the accesses are not within the object-bounds.

Figure 3 shows the architecture of CGuard. CGuard takes the

intermediate representation (IR) of a program as input. The IR is

in static single assignment (SSA) form. We incorporate our spatial

safety logic in the IR to generate the checked IR. The checked IR is

compiled to an executable. At load time, the executable is linked

with our custom library that implements wrappers, custom library

routines, and the custom allocator. In the rest of this section, we

explain our scheme in detail.

Program IR
Checked

IR

Adding

bounds

checks

Executable
Library

wrappers

Dynamic

Linking

Custom

Library

and

allocator

System

Libraries

Figure 3: Architecture of CGuard.

2.2 Identifying Static-Base

Before every dereference of pointer x, the bounds can be computed

using the o�set �eld in the tag area of x. Ensuring the correct

o�set for every pointer de�nition is expensive because tags need

to be updated on every pointer arithmetic. To reduce the number

of updates, when pointer x is dereferenced, CGuard statically tries

to �nd another pointer y that points to the same object as x and

contains the correct o�set. We call y the static base of x. The bounds

of the object are computed using y. We explain below our approach

to �nd the static-base for di�erent kinds of de�nitions in the IR.

1) For pointer arithmetic and typecast operation x, we recursively

trace back all arithmetic and typecast operations to obtain a pointer

y that is not the result of pointer arithmetic or a typecast operation.

In this case, the static-base of y is the static-base of x. Consider the

following IR code.

x = bitcast ty1 ptr to ty2

y = getelementptr ty, ty* arr, i32 i

Here, the bitcast instruction generates a new de�nition x after

casting ptr of type ty1 to ty2. In this case, the static-base of x is

the same as the static-base of ptr. The operands of getelementptr

instruction are arr and i. getelementptr generates a new de�ni-

tion y whose value is &arr[i]. In this case, the static-base of y is

the same as the static-base of arr.

2) For an integer-to-pointer typecast x, if we can statically corre-

late x with a previous pointer-to-integer operation y, we infer the

static-base of x as the static-base of y. If such a pointer-to-integer

operation is not found, x is treated as the static-base of itself.

3) Pointers loaded from memory, the return value of a function call,

function arguments, stack allocations, and global variables are also

the static-bases of themselves.

4) The SSA representation contains phi-nodes to merge the def-

initions coming from multiple predecessor basic-blocks. In this

case, we add a new phi-node that merges the static-bases of the

de�nitions coming from these predecessors.

z_sb = phi <sb(x), pred1>, <sb(y), pred2>

z = phi <x, pred1>, <y, pred2>

In this example, z is a phi-node that merges de�nitions x and y

coming from basic blocks pred1 and pred2. We add a new phi-node

z_sb, the static-base of z, that merges the static-bases of x and y

denoted using sb(x) and sb(y).

5) The IR contains the instruction select that emulates the ternary

operator as shown below.

z_sb = select cond, sb(x), sb(y)

1309

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Piyus Kedia, Rahul Purandare, Udit Agarwal, and Rishabh

z = select cond, x, y

In this example, select takes condition cond and de�nitions

x and y as input and creates a new de�nition z. At runtime, z

will be equal to x or y depending on the value of cond. To �nd

the static-base, we add an additional select instruction that takes

cond, sb(x), and sb(y) as inputs and create a new de�nition z_sb,

the static-base of z.

2.3 Tagged Pointer

We use the spare higher 16-bits of virtual address to store the tag.

A tagged-pointer has the following structure.

typedef struct {

unsigned long long address :48;

unsigned long long invalid :1;

unsigned long long offset :15;

} tag_t;

In the rest of the paper, we will refer to the tagged-pointer type

using tag_t. The lower 48-bits of a pointer contain the actual ad-

dress, represented using the address �eld in the tag_t. The invalid

�eld is used to mark a pointer invalid (as discussed later in this

section). The maximum o�set that can be stored in the 15-bits o�set

�eld is MAX_OFFSET (0x7FFF). The allocation for a size larger than

or equal to MAX_OFFSET is performed from the segment-based

allocator (discussed in the next paragraph). The o�set �eld in the

static-base tagged pointer contains the o�set relative to the actual

base address of the object referred by the static-base. If the relative

o�set is equal to MAX_OFFSET, then the base address is computed

using the alignment property of the segment-base allocator.

Segment-based allocator. The segment-based allocator main-

tains a list of segments that are shared across all threads. A segment

is a 4GB (con�gurable at compile time) contiguous virtual address

space. The starting address of a segment is aligned to 4GB. The

segment is divided into �xed-size slots. Both the size and alignment

of a slot are 2: (a power of two). The value of k can vary across

segments. The �rst few pages of the segment are used to store the

metadata (e.g., a bitmap to track free slots). Initially, the virtual

addresses are reserved for the entire segment. Physical pages are

mapped only during the actual allocation. For every allocation, a

slot is returned to the caller. Because a slot can be much larger than

an actual allocation size, we only map the number of physical pages

that are su�cient for the allocation size. The physical pages are

reclaimed during the deallocation.

CGuardmanages stack allocations of sizes greater than or equal

toMAX_OFFSET using malloc and free. For these objects,CGuard

replaces the calls to stack allocation API with calls to malloc and

inserts free when the objects go out of scope. CGuard also inserts

object-headers before stack and global allocations.

Updating the pointer tag. The tag is updated every time a

pointer escapes the static scope as a result of it being passed to

a function, stored in memory, or returned to a caller. We do not

track a pointer if it escapes after being typecasted to an integer.

Instead, we expect that the program casts it back to a pointer before

the escape if the integer is out-of-bounds or modi�ed due to some

arithmetic operations on the integer. After the escape, the pointer

may become a static-base in other parts of the program. For example,

#define OBJ_HEADER_SIZE 8

#define SEGMENT_MASK ~(SEGMENT_SIZE - 1)

void *get_base(tag_t sb) {

if (sb.offset < MAX_OFFSET)

return (void *)(sb.address - sb.offset);

if (sb.invalid) return NULL;

if (is_global_var(sb.address))

return get_base_allocator(sb.address);

segment_t *s;

void *ret;

s = (segment_t *)(sb.address & SEGMENT_MASK);

ret = (void *)(ptr.address & s->slot_mask);

return ret + OBJ_HEADER_SIZE;

}

Figure 4: Routine used to obtain the base from an input

tagged static-base (sb). If the o�set in the tagged static-base is

less than MAX_OFFSET, the base (lower bound) is computed

after subtracting the o�set from the address of the static-base

pointer. Otherwise, the segment alignment property or the

allocator API is used to obtain the base.

in our static-base identi�cation logic (Section 2.2), a loaded value is

identi�ed as static-base. After a pointer is stored in memory, it can

be loaded at di�erent parts of the program and treated as a static-

base. We update the tag before the escape to ensure that all the

tagged static-bases always contain the correct o�set. If the pointer is

not within the bounds or does not satisfy the size-invariant property

(Section 2.5), the invalid bit in the tag area is set. Accessing pointers

with the invalid-bit set result in runtime exceptions preventing

out-of-bounds memory accesses.

Handling out-of-bounds pointers. In the general case,CGuard

allows memory access when an in-bounds pointer y derived from

an out-of-bounds static-base x (due to pointer arithmetic) is derefer-

enced. If the o�set �eld in the tag area of x is less than MAX_OFFSET,

the actual base address can be computed by subtracting the o�set

and ignoring the invalid-bit. In the other case, CGuard cannot com-

pute the actual base, and thus the dereference of y is not allowed.

2.4 Computing Bounds and Inserting Checks

CGuard computes the base address of a pointer de�nition using

the tagged static-base. The base computation logic (get_base) is

shown in Figure 4. If the o�set is less than MAX_OFFSET, get_base

subtracts the o�set in the tag from the address of the static-base

pointer. Otherwise, if the static-base is invalid (i.e., out-of-bounds),

get_base cannot retrieve the actual base and returns NULL. If the o�-

set is equal to the MAX_OFFSET and the address belongs to the range

of global variables, it calls the allocator API get_base_allocator

(discussed in Section 3), which does not rely on pointer tag to ob-

tain the base. It also maintains a small cache to avoid calls to the

allocator API, which works well in practice because there are only a

few global variables of size greater than or equal to MAX_OFFSET

across all of our benchmarks. Finally, for segment-based allocation,

the base address of the object is computed using the alignment

1310

CGuard: Scalable and Precise Object Bounds Protection for C ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

property of the segments. All slots in a segment are aligned to 2
: .

The starting address of a slot is computed by resetting the lower

k-bits of the pointer address. The �rst eight bytes of a segment

contain slot_mask (∼(2: − 1)). The starting address of the object

slot is computed by ‘anding’ the pointer address and the slot_mask.

The starting address of a slot is the object-header. The base address

is computed by skipping the header.

If the static-base is an integer-to-pointer typecast, the o�set �eld

can be incorrect due to untracked integer arithmetic operations

performed on the integer. To handle this case, if the static-base is

an integer-to-pointer instruction or a phi or select node that de-

pends on an integer-to-pointer instruction, CGuard backtracks all

operations on the integer to check if it is involved in any arithmetic.

If so, CGuard uses the allocator API to �nd the base. In case an

integer which escapes the static scope with an incorrect tag can be

accessed in the future, we rely on the application to typecast it into

a pointer before letting it escape.

Bounds check. Our bounds check logic is shown below.

void bounds_check(void *base , void *ptr ,

void *ptrlimit , void *limit) {

if (ptr < base || ptrlimit > limit) abort ();

}

The arguments to the bounds_check routine are the pointer (ptr)

(without tag) that is being accessed, the base address (base) of the

object referred by ptr (e.g., obtained using get_base), the upper

bound of the memory access (ptrlimit), and the upper bound of

the object (limit). The upper bound of the object is computed by

adding its size obtained from the object-header to its base address.

If ptr does not lie between base and limit, the program is aborted.

2.5 Size-Invariant

CGuard enforces the size-invariant to eliminate checks when only

the �rst element of an array or pointer to a structure element

is accessed. This invariant requires all static-bases to point to a

memory area that is large enough to store at least one element of

the corresponding array. For example, if char *a is a static base,

then amust point to a memory area that is at least one byte long; if

the type of a is unsigned long long *, it must point to a memory

area that is at least eight bytes long. If a pointer escapes the static

scope, we invalidate the pointer if the size-invariant does not hold.

This allows CGuard to remove bounds-check when only the �rst

element of the array is accessed, since CGuard does not reset the

invalid bit for these accesses. Accessing a pointer that does not

satisfy the size-invariant property result into access violation.

In our experiments, we found that the size-invariant holds for the

majority of the benchmarks (Section 4.4). For the benchmarks that

violate the invariant, the problem can be addressed either by using

a smaller type for the static-base and external typecasts whenever

needed or by extra allocation. Consider the following code snippet:

struct info {

int a, b, c, d;

};

int foo(struct info *i) {

return i->b;

}

void bar() {

int arr[2] = {1, 2};

return foo((struct info*)arr);

}

In this snippet, the size-invariant requires bar to pass an object

of size at least sizeof(struct info) to foo. Because the size-

invariant does not hold, CGuard invalidates the parameter passed

to foo. The hardware generates an access violation when foo tries

to dereference the invalid pointer. In this case, the bounds check is

performed in the signal handler as discussed in Section 2.6. However,

signal handling is expensive. These cases can be e�ciently handled

using code refactoring. A way to �x this problem is to allocate at

least sizeof(struct info) memory for the variable arr in the

bar routine. This approach incurs memory overhead. An alternative

is to rewrite the foo and bar routines as follows:

int foo(int *a) {

struct info *i = (struct info*)a;

return i->b;

}

void bar() {

int arr[2] = {1, 2};

return foo(arr);

}

In this case, since the argument type in foo is int*, bar does

not invalidate the parameter passed to foo. CGuard adds dynamic

checks in foo while dereferencing i because based on the size-

invariant, it only knows that i is at least four bytes long. This

approach does not incur any memory overhead but has a CPU

overhead due to bounds checking. If types cannot be modi�ed, an

additional attribute can be used to disable or pick a di�erent size

for the size-invariant optimization for a given type. We plan to

implement the type attribute in the future.

2.6 Recovery from Size-Invariant Errors

A legal memory access can cause an access violation if the size-

invariant property is violated at runtime. We discuss our technique

to recover from these errors using the example in Figure 5.

Let us say the caller of foo passes a single object of type struct

smallTy, and consequently, the argument n gets invalidated be-

cause the size invariant property does not hold at the call site.

However, access to n->v.e in foo is legal because it’s within the

bounds of the object (pad is outside the bounds).

At function entry, %rdi contains the argument n. At line-1, the

address of n->v.e is computed. At line-3, CGuard resets the o�set

�eld in the pointer tag. At line-4, the actual dereference happens.

Because the size invariant property does not hold, the hardware

throws an exception at line-4. At this point, the signal handler in

the userspace is called. To recover from fault, we perform a bound

check in the signal handler for which we need to compute the base

address. The base address can be computed using the fault address,

tag bits, and the o�set from the static-base. However, as we can see,

the tag information is lost at this point because the %rdi register

that was originally holding the tag has been overwritten at line-3.

To obtain the tag bits, we have modi�ed the compiler to ensure that

the value of the potential fault address with the tag remains live

1311

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Piyus Kedia, Rahul Purandare, Udit Agarwal, and Rishabh

struct smallTy {

int a, b, c, d, e;

};

struct largeTy {

struct smallTy v;

char pad [8];

};

int foo(struct largeTy *n) {

return n->v.e;

}

Without recovery:

1. lea 0x10(%rdi), %rdi ;compute &n->v.e

2. mov $0x1FFFFFFFFFFFF , %r10

3. and %r10 , %rdi ;reset top 15-bits

4. mov (%rdi), %eax ;eax = n->v.e

5. ret

With recovery:

6. lea 0x10(%rdi), %rdi ;compute &n->v.e

7. mov $0x1FFFFFFFFFFFF , %r10

8. mov %rdi , %r11 ;saving the tag

9. and %r10 , %rdi ;reset top 15-bits

10.mov (%rdi), %eax ;eax = n->v.e

11.ret

Stub:

mov (%rdi),%eax ;execute excepting instr

pop rdi ;restore base register

ret

Figure 5: CGuard generates code labeled as “With recovery”

(line:6-11) to recover from the size-invariant errors. In this

case, CGuard does not add bounds-check before the memory

access in foo. Instead, CGuard ensures that the pointer tag is

live (line:8) across the memory access (line:10) to enable the

emulation of the bounds-check in the signal handler, which

is called if the size-invariant property is violated at runtime.

during the access violation. In the modi�ed assembly, at line-8, the

compiler saves the content of %rdi in the %r11 register, which is

live during the memory access.

In addition,CGuard generatesmetadata that is used by the signal

handler to emulate the bounds check. The metadata includes the

base register and displacement of the potential excepting instruction

(%rdi and 0), the register that contains the tag (%r11), the o�set

from the static-base (0x10), the size of the memory access (4), and

the length of the excepting instruction. Using this information,

CGuard performs the bounds check in the signal handler. If the

bounds check succeeds, CGuard generates a stub corresponding

to the excepting instruction. The �rst instruction in the stub is the

excepting instruction. The stubs are cached and reused for future

faults to the same instruction pointer. Before calling the stub, the

signal handler saves the address of the next instruction (address of

line-11) and the contents of the base register (%rdi) on the stack (i.e.,

the stack pointer before the exception). It then sets the instruction

pointer to the starting address of the stub and resets the invalid bit

in the base register (%rdi) before returning from the signal handler.

After returning from the signal handler, the stub code is executed

that executes the excepting instruction and restores the value of the

base register (%rdi) before returning to the original code (line-11).

This approach can only help us recover from those accesses

in which the o�set �eld in the tag is less than MAX_OFFSET. We

cannot retrieve the base address for large objects because the invalid

bit is used for both size-invariant violation and an out-of-bounds

address. The additional overheads for these changes are in the range

0-5% for the SPEC benchmarks.

2.7 Library Calls

We assume that system libraries are safe. Since library code cannot

interpret our tagged pointers, we add wrappers around library

calls to mediate between an instrumented application binary and

unmodi�ed system libraries, as shown in Figure 3. We trust most

of the library functions to use pointer arguments safely. For some

library routines, we insert bounds check to ensure spatial safety.

For many library calls, CGuard simply resets the tags in the

pointer arguments before calling the target function. However,

this is not always su�cient. For example, library functions may

return an interior pointer, perform a callback to the application

routine compiled using CGuard, and return their internal objects.

In addition, the internal �elds of an argument may contain tagged

pointers. CGuard uses a custom implementation to handle these

cases correctly.

2.8 Object Initialization and Memory Accesses

If an object is not initialized properly, the application may access

any arbitrary memory location. To prevent such cases, we initial-

ize the pointer �elds in all allocations (including stack and global

variables) with NULL. Furthermore, if a global variable is initialized

with an interior pointer, we also update the corresponding tag in

the initialization.

If memory access is guarded by a bounds check, we reset the

pointer tag before the memory access; otherwise, we only reset the

o�set �eld to catch the invalid accesses using pointers that do not

satisfy the size-invariant (Section 2.5).

For indirect calls with memory operands, we reset the pointer

tag. If the address of a function leaves the static scope, we make it

invalid. Marking the function addresses invalid disallows read/write

on these addresses; however, the execution of invalid addresses

is allowed using an indirect call. As a result, the application can

execute any arbitrary virtual address using an indirect call. The

existing mechanism for protecting indirect calls [7, 43] can be used

alongside our scheme to enforce control �ow integrity.

3 IMPLEMENTATION

We implementedCGuard[1] as a compiler pass in the LLVM-10.0.0

compiler. We used JEMALLOC-5.2.1 as our allocator. We extended

the JEMALLOC allocator to allocate large objects from our segment-

based allocator as discussed in Section 2. We discuss below our

implementation and optimizations to reduce the CPU overheads.

Instrumentation. To insert the bounds check, we need to �nd

the base �rst. If multiple memory accesses share the same static

1312

CGuard: Scalable and Precise Object Bounds Protection for C ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

base, we try to insert a single call to our base �nding routine that

gets invoked at runtime. We implemented the base �nding routine

in the assembly. A function call may create register pressure, so we

use a di�erent calling convention for these calls that only uses the

�rst argument (%rdi) and the return value (%rax) as caller-saved

registers. In the fast path of our implementation, only %rdi and

%rax are used. In the slow path, we save/restore other registers that

are used. Once we calculate the base, the bounds check logic, as

shown in Section 2.4, is directly instrumented in the LLVM IR.

Detecting illegal accesses. Notice that in addition to bounds

checks, we also rely on the invalid bit in the tag area to detect

illegal accesses. Before accessing memory, we reset the top 15 bits

excluding the invalid bit. If the invalid bit is set, the hardware gen-

erates the SIGSEGV signal because the address is non-canonical. We

register a signal handler for SIGSEGV using the sigaction system

call. If an exception is generated due to illegal memory access, the

operating system transfers the control to the signal handler in the

user space. In the signal handler, we also implement our recovery

mechanism for size-invariant errors.

Finding base. The get-base-allocator routine (Section 2),

takes an internal address of an object and returns the base address of

the object. For heap objects, the base address is computed using the

allocator’s internal data structures. For large-heap objects, the base

address is computed using the alignment property of the segments.

To support the base �nding for stack variables, we register stack

objects with the allocator when they are created and deregister them

when they are destroyed. Note that this is required only for the stack

variables that escape the static scope or are typecasted to an integer.

For global and static variables, at load time, the allocator walks

global objects in di�erent sections of the executable as speci�ed in

the executable format and stores the bases in sorted order to �nd

the base using the binary search during the program execution.

Memory-mapped �les and shared memory. We do not sup-

port memory-mapped �les and some shared-memory APIs. How-

ever, we support ANONYMOUS mmap by allocating one extra page

for storing the object-header. Notice that mmap always returns a

page-aligned address.

Loop optimization. If i) a pointer is always accessed inside a

loop, ii) the pointer address only depends on the induction variable

and the values outside the loop, iii) the lower bound, upper bound,

and the step count of the induction variable are known, iv) the loop

executes at least once, and v) the loop condition is the only way

to exit from the loop, then we move the bounds check outside the

loop. The example in Figure 6 demonstrates our optimization.

Updating pointer tag. The tag update for escaping pointers

(Section 2.3) requires a bounds-check involving memory access.

However, the escaping pointers could be invalid (or uninitialized)

such as the ones pointing to a freed object, and may trigger a vi-

olation, if accessed. Even though CGuard handles these unlikely

situations, we omit the implementation details since we never en-

countered this case in any of our benchmarks. To recognize invalid

pointers, CGuard initializes all pointers �elds with NULL during

allocation and marks all pointers initialized with a constant integer

or a function address as invalid.

Before optimization:

if (j > 0) {

for (i = 0; i < j; i++) {

bounds_check(arr_base , &arr[i+k],

&arr[i+k+1], arr_limit);

arr[i+k] = m;

}

}

After optimization:

if (j > 0) {

bounds_check(arr_base , &arr[k],

&arr[k+j], arr_limit);

assert (&arr[k+j] > &arr[k]);

for (i = 0; i < j; i++)

arr[i+k] = m;

}

Figure 6: arr is accessed inside the loop. Since the lower and

upper bounds for the array accesses inside the loop are arr[k]

and arr[k+j], the bounds check is moved outside the loop.

4 EVALUATION

4.1 Experimental Setup and Benchmarks

We ran our experiments on a machine running Ubuntu-20.04.2

equipped with an 8-core 3.6 GHz Intel i9-9900k processor, 32GB

RAM, 1-Gb Ethernet controller, and 512GB SSD drive for persistent

storage. We disabled hyper-threading during our experiments. We

measured CPU overheads using the SPEC CPU2017 [13] bench-

marks. We used the reference input size for SPEC. For multicore

performance, we used Phoenix-2.0 [41] and the Apache-2.4.46 web-

server. For Apache, we also instrumented apr-1.7.0 and apr--

util-1.6.1 for spatial safety checks. We con�gured Phoenix and

Apache not to use memory-mapped �les. In addition, we con�gured

Apache to use anonymous MMAP for shared memory instead of Sys-

tem V shared memory APIs. Phoenix [41] reports that for the kmeans,

pca, and histogram benchmarks, the pthread version is more scal-

able than the map-reduce version. We ran the pthread version

for these benchmarks and the map-reduce version for the rest. We

used the large input set in our evaluations. For matrix-multiply,

pca, and kmeans, we used input sizes of 2000x2000, 3000x3000, and

200000 respectively to make them run for at least a second. These

benchmarks have a very short execution time even for the large

input set. For the security evaluation, we ran the BugBench [27]

benchmark suite.

To measure the execution time, we took the median of �ve runs

for every benchmark. To report the memory overhead, we used

the “Maximum resident set size” reported by “/usr/bin/time -v”

command. We used the geometric mean to compute the average

overhead. For the server experiment, we ran the client on a di�er-

ent machine (with a 1-Gbps network card) and directly connected

both the machines. For scalability experiments, we disabled CPU

cores using the CPU hotplug feature in the Linux kernel. For na-

tive results, we used the unmodi�ed version of the LLVM-10.0.0

compiler and the JEMALLOC-5.2.1 allocator that we have used for

our implementation. In our con�guration for the native run, we

1313

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Piyus Kedia, Rahul Purandare, Udit Agarwal, and Rishabh

used “-fsanitize=address” �ag to generate the results for Address-

Sanitizer [37]. We disabled the memory leak detection feature of

AddressSantizer because we could not run some benchmarks due

to memory leaks. We compiled all our benchmarks with the O3

optimization level. The GeoMean label in our graphs represents the

geometric mean average.

4.2 Performance

Figure 7a shows the runtime overheads for SPEC benchmarks with

and without size-invariant optimization, and the runtime overheads

of AddressSanitizer. With all optimizations, the overheads are in the

range of 1-245%. The geometric mean is 42.1%, as shown in the last

column. Perlbench (denoted as Plbench) has the worst overhead

of 245%, whereas lbm shows merely 1.2% overhead. SGXBounds

reported 41% overheads inside the SGX enclaves [5, 28] and 55%

overheads for outside the enclaves for SPEC CPU2006. Their aver-

age overhead also includes C++ benchmarks; therefore, direct com-

parison is not possible. Outside enclave, SGXBounds overheads for

lbm and mcf are around -50% (better than native) and 30% compared

to our overheads of 1.2% and 47.9% for these benchmarks. Inside

enclave, SGXBounds reported around 5% overhead for lbm and 1%

overhead for mcf. Interestingly, SGXBounds reported that lbm also

performs better than the native version for the AddressSanitizer

implementation in the LLVM compiler. They attributed the change

in memory layout to this speedup. Perlbench and gcc are the two

worst performing benchmarks in our experiments. They were not

evaluated by SGXBounds because they require custom modi�ca-

tions in the source code. We also require custom changes for these

benchmarks, as described in Section 4.4. The overheads of gcc, mcf,

and imagick are 170.9%, 106%, and 68.3% without size-invariant

optimization compared to 107.2%, 47.9%, and 34.1% overheads with

the size-invariant optimization indicating its usefulness.

AddressSanitizer performs better than SGXBounds in an un-

constrained environment [26]. Therefore, we also compared the

performance of CGuard with AddressSanitizer. AddressSanitizer

could run all SPEC CPU 2017 benchmarks with the geometric mean

overhead of 68%. The overheads were in the range of 24%-201%. It

performed better thanCGuard for Perlbench, mcf, xz benchmarks.

Notice that AddressSanitizer had high overheads for Perlbench

(160%, lower than CGuard 245% overhead) and gcc (201%, higher

than CGuard 107% overhead) benchmarks. SGXBounds could not

run these benchmarks. Unlike SGXBounds, in our experiments lbm

did not perform better than native using AddressSanitizer.

Figure 7b shows the memory overhead of CGuard and Ad-

dressSanitizer for the SPEC benchmarks. Our memory overhead

for SPEC is 1.16% (Figure 7b), which is slightly higher than the

0.4% overhead reported by SGXBounds. gcc and perlbench are the

worst-performing benchmarks with overheads of 104% and 17%,

respectively. For gcc, our memory overhead is mainly due to the

source code modi�cations related to the size-invariant (discussed

in Section 4.4). To con�rm this, we ran the native run with our

custom allocator. The memory overhead in this case was 2%. We

performed a similar experiment for perlbench and observed 16%

overhead. This con�rms that source code refactoring is not the

reason for the memory overhead in perlbench. To validate that the

overhead is not due to our segment-based allocation, we modi�ed

the original allocator to allocate eight additional bytes for every

allocation. With the modi�ed allocator, the overhead was the same

as with our custom allocator. This indicates that the overhead is

primarily due to the small objects for which the overhead of object

headers is high. On the other hand, the memory overheads of Ad-

dressSanitizer were in the range of 13%-303%, with the geometric

mean overhead of 71.2%. This is expected because AddressSanitizer

uses shadow memory and puts freed objects into quarantine.

To summarize, it is di�cult for us to directly compare with

SGXBounds because they could not run Perlbench and gcc, which

shows substantial overhead with our tool. On average, CGuard

performs better than AddressSanitizer, which performs better than

SGXBounds in an unconstrained environment.

Scalability. To test the scalability of our approach, we ran the

Phoenix benchmark suite with 1, 2, 4, and 8 CPUs. Figure 8 shows

the execution time overhead of CGuard and AddressSanitizer w.r.t.

the native execution. Phoenix’s average CPU and memory over-

heads using CGuard are 26.3% and 1.6% on a single core and 19.9%

and 5.9% on eight cores respectively. As expected, our performance

does not degrade signi�cantly as the number of cores increases.

However, we observed a sharp decrease in overheads with an in-

creasing number of CPUs in the histogram and linear-regression

benchmarks. This is because both of these benchmarks are not fully

utilizing the CPUs onmultiple cores, thus leaving scope forCGuard

to steal some CPU cycles. The CPU utilization for histogram for

the native run on 1, 2, 4, and 8 cores is 99%, 139%, 177%, and 205%,

compared to 99%, 151%, 205%, and 251% CPU utilization forCGuard.

A similar pattern is observed for the linear-regression bench-

mark, where the additional CPU overheads after disabling the size-

invariant optimization were within the range of 10% except for the

kmeans for which it is around 25%.

For the Phoenix benchmark suite, SGXBounds performs bet-

ter than CGuard. For kmeans, SGXBounds reported around 60%

overhead compared to 148% overhead in our approach. For the

remaining benchmarks, the CPU overheads in SGXBounds were

less than 10%. Notice that, unlike CGuard , SGXBounds does not

need to update the tags on every pointer arithmetic. We discussed

several optimizations in our design to address this issue. Still, for

benchmarks in which the interior pointers are stored or passed to

a function frequently, SGXBounds may perform better. However,

unlike SGXBounds, our solution works even if the total memory

consumption exceeds 4GB. CGuard outperformed AddressSantizer

for all benchmarks. The CPU overheads of AddressSanitizer were

in the range of 18%-631%, with the geometric mean overheads of

89.4% and 72.9% on single and eight cores, respectively.

We observed large variations in the memory overheads for the

kmeans and matrix multiply benchmarks (Figure 9). The over-

heads vary between 47-108% for kmeans and 5-25% for matrix-

-multiply. The memory consumption of these benchmarks is very

small: 10MB for kmeans and 53MB for matrix-multiply. We be-

lieve that the page table pages corresponding to our custom heap

segments are adding a few extra MBs, which is prominent due to the

small memory footprint. To validate our hypothesis, we ran these

benchmarks with relatively large inputs, and the resulting over-

heads of kmeans and matrix-multiply were in the ranges 57-62%

and 2-6%. To further validate that the high overheads in kmeans are

1314

CGuard: Scalable and Precise Object Bounds Protection for C ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

245

107

48

91
60

1
34 35 42

300

171

106
91

64

1

68
36

56

160

201

37

129

50
24

66
36

68

0

50

100

150

200

250

300

350

Plbench gcc mcf x264 xz lbm imagick nab gmean

Default No size invariant AddrSan

GeoMean

(a) % runtime overheads w.r.t. native execution for CGuard with size-invariant

optimization, CGuard without size-invariant optimization, and AddressSanitizer.

17

104

0 1 0 0 0 2 1

303

116

47
18

34
13

216 228

71

0

50

100

150

200

250

300

350

Plbench gcc mcf x264 xz lbm imagick nab gmean

Default AddrSan

GeoMean

(b) % memory overheads w.r.t. native execution for

CGuard and AddressSanitizer.

Figure 7: Runtime and memory overhead of CGuard and AddressSanitizer for the SPEC benchmarks.

42

148

27

6

18 18
29 26

74

163

85

48
78

19

631

89
31

145

20

7

15 17

32
24

58

210

60
47

74

19

457

81

21

141

20

5

13 12

34
21

45

246

55 46

83

21

291

76

15

148

17

7
10

17

32
20

39

302

44 47

86

29

176

73

1

2

4

8

16

32

64

128

256

512

1024

histogram kmeans linear-reg matrux-mul pca string-match word-count mean

Default-1 AddrSan-1 Default-2 AddrSan-2 Default-4 AddrSan-4 Default-8 AddrSan-8

GeoMean

Figure 8: % runtime overheads w.r.t. native execution of CGuard and AddressSanitizer for Phoenix benchmarks running on

1,2,4, and 8 CPUs. Default-n corresponds to CGuard with n CPUs, AddrSan-n corresponds to AddressSanitizer with n CPUs.

0

47

0 5 2 1 1 2
13

99

14 20 14 13

38
22

0

58

1 8 3 1 1 2
13

119

14 20 14 13

40
23

0

74

1
14

6 1 0 3
13

147

14 20 14 13

42
24

1

108

2

25
10 2 3 613

215

14 21 15 13

45

26

0

50

100

150

200

250

histogram kmeans linear-reg matrux-mul pca string-match word-count mean

Default-1 AddrSan-1 Default-2 AddrSan-2 Default-4 AddrSan-4 Default-8 AddrSan-8

GeoMean

Figure 9: % memory overheads w.r.t. native execution of CGuard and AddressSanitizer for Phoenix benchmarks running on

1,2,4, and 8 CPUs. Default-n corresponds to CGuard with n CPUs, AddrSan-n corresponds to AddressSanitizer with n CPUs.

not due to our segment-based allocation, we ran the native version

with a modi�ed allocator that allocates eight extra bytes for each

allocation. In this case, we found that the memory overheads for

kmeans w.r.t. the native execution were in the range of 1-4%. This

means that the memory overheads in kmeans are mainly due to the

large number of small live objects. AddressSanitizer also showed

signi�cant variations in memory overheads (99%-215%) for di�erent

numbers of CPUs for kmeans. As expected, the geometric mean

memory overhead of AddressSanitizer is higher than CGuard.

To further validate the usability of our tool for real applications,

we ran the Apache webserver. Using a 1Gbps network card, we

could not saturate all the cores evenwith concurrent requests. In the

native run, the network card could only saturate three cores, so we

ran our experiments with increasing number of cores. We ran the

1315

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Piyus Kedia, Rahul Purandare, Udit Agarwal, and Rishabh

30
28 27

18

2 1

31

37 35

27

10

1

35
32

29

20

4
1

0
5

10
15
20
25
30
35
40

1 2 3 4 5 8

Default No size invariant AddrSan

Figure 10: % reduction in the number of requests per seconds

w.r.t. native execution (CGuard w/ size-invariant optimiza-

tion, CGuard w/o size-invariant optimization, and Address-

Sanitizer) for the Apache webserver running on 1,2,3,4,5, and

8 CPUs.

Table 1: BugBench benchmarks, which have known spatial

safety bugs, SPEC CPU2017 and Phoenix-2.0 benchmarks,

and known vulnerabilities in Nginx and Memcached applica-

tions for whichCGuard could detect spatial safety violations.

The second column contains the �lename:line-number pairs,

at which the spatial safety violations were detected.

Benchmark Access violation points

bc bc.c:1425; util.c:270,577; storage.c:177

gzip gzip.c:828

man man.c:977,983,155; man�le.c:243

ncompress compress42.c:896

ploymorph polymorph.c:120,44,277,194,198,200, 231

gcc reload1.c:1868

x264 biaridecod.c:297

string string_match.c:158

CVE-2013-2028 ngx_recv.c:136

CVE-2011-4971 memcached.c:3534

ab tool on the client machine and enabled the KeepAlive feature in

the requests. To �nd the right metric for the concurrency level, we

tried di�erent parameters until we observed either a reduction or

no signi�cant change in the throughput. During these experiments,

we ran our instrumented server and used its default pages. We got

di�erent concurrency levels for a di�erent number of cores.

Figure 10 plots the result for 1,2,3,4,5, and 8 cores. The �rst

and second bars correspond to overheads with and without the

size-invariant optimization. The third bar shows the overheads

of AddressSantizer. We observed 29.7% overhead with the size-

invariant optimization, 36.6% overhead without the size-invariant

optimization, and 34.7% with AddressSanitizer when the CPUs were

fully saturated (i.e., with less than four cores). Our numbers started

improving when the cores were partially saturated in the native

run. With eight cores, we observed only 0.9% overhead. The relative

standard deviations were in the range of 0.25-1.47% across all runs.

4.3 Security

To test the e�ectiveness of CGuard, we ran the BugBench [27]

benchmark suite, which contains a set of buggy applications some

Table 2: Source code refactoring: Type a) changes related

to size-invariant, b) automatic pointer comparison to int

comparison generated by the frontend, and c) other changes.

Benchmark Type Source code modi�cation KLOC

Perlbench a hv.h:48; pad.c:2808; MD5.c:184; op.c:8401

b regexp.h:474, regcomp.c:13764 291

c pp_pack.c:3038; av.c:159; perly.c:408;

pp_hot.c:3175; regcomp.c:16274;

gcc a tree-ssa-operands.c:130,133; tree-

ssa-sccvn.c:1542,1580,1610; tree.c:

2102,863,865,958,1467,1584,3604, 9411;

sbitmap.c:82; gimple.c:148; spars-

eset.c:38; rtl.c:199,341; reload1.c:915;

cpp_symtab.c:173

b obstack.h:526,538 971

c c-common.c:5296; dominance.c:1339; ggc-

page.c:571; pointer_set.c:67

Apache a event.c:1501 301

Phoenix b linear_regression.c:256 7

c atomic.h:81

of which have spatial safety bugs. Table 1 shows all the program

points at which CGuard detected out-of-bounds accesses for the

BugBench, SPEC, and Phoenix benchmark suites. We found all

the bugs reported in the BugBench code repository. In addition,

CGuard also detected spatial safety violations in gcc and x264

benchmarks from the SPEC CPU2017 benchmark suite.

In gcc, the global variable hard_regno_nregs is accessed using

a negative index. The check for the negative index is conducted

after the variable access. Importantly, the AddressSanitizer imple-

mentation in LLVM could not detect this bug in gcc. SPEC CPU2017

contains an old version of gcc compiler. This bug is not present in

the current gcc compiler.

In x264, global variables INIT_FLD_MAP_I and INIT_FLD_LAST_I

are accessed at an index that is outside the bounds of these objects.

These variables are passed at lines-90,91 in context_ini.c. In the

string_match benchmark from the Phoenix, fdata_keys, which

is allocated for size finfo_keys.st_size at line-259 in string-

_match.c is accessed in the loop. This loop has an incorrect bound

check in the loop condition that allows the program to access an ad-

ditional byte past the original allocation size. Our post-evaluation

inspection revealed that the bug reported for perlbench [6] in

SPEC CPU2006 has already been �xed in SPEC CPU2017. There-

fore, CGuard did not report it.

CGuard also detected known spatial safety violations in nginx-

-1.4.0 (CVE-2013-2028)[2] and memcached-1.4.4 (CVE-2011

–4971)[3]. Nginx was tricked into receiving a message of arbitrary

length, which can be controlled by the user in a stack-allocated

array. The spatial safety checks in our library wrapper for recv

caught this bug. In Memcached, a negative value is passed as a size

parameter to the memmove routine triggering violation.

To summarize, CGuard could detect all the bugs reported by

existing tools and found a new bug in the gcc benchmark from

SPEC CPU2017.

1316

CGuard: Scalable and Precise Object Bounds Protection for C ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

4.4 Usability

For most benchmarks, we did not need to refactor source code.

Table 2 provides a summary of our changes. At a broad level, we

categorized the changes as follows: a) Related to the size-invariant,

b) Related to a pointer comparison converted to an integer compar-

ison by the frontend, and c) Other.

Most changes were related to the size-invariant, and these were

the easiest to �x. We found that for most of these cases, CGuard

threw an exception at the allocation point itself.

In some cases, the frontend generated an integer comparison

instead of a pointer comparison. These conversions were typically

done for “!” style comparison. We refactored the code so that the

frontend generated a pointer comparison. In the future, we plan to

extend the frontend to avoid the need for these changes.

In gcc, pointers are used as integers in comparisons, array in-

dexes, and hash table keys. In all these cases, we changed the source

code to reset the pointers’ tags.

To summarize, most benchmarks did not require any refactoring.

Even for large applications e.g. Apache, we needed refactoring at

only one place. This indicates that our approach is feasible. We tried

to run gcc, perlbench, and apachewithout the size-invariant mod-

i�cations to test our size-invariant recoverymechanism. Perlbench

and apache ran successfully without additional overheads because

parts of code that require size-invariant modi�cation are not on

the hot path. However, gcc crashed because it employs a custom

allocator that uses system allocator in the backend. As a result,

most of the objects are large for which CGuard cannot retrieve the

base address during the size-invariant violations.

5 LIMITATIONS AND FUTUREWORK

CGuard relies on a programmer to typecast an integer to a pointer

if an integer with an inconsistent tag escapes the static scope and

is accessible later. In our experiments, we found that this practice

is generally followed (see Section 4.4). We also assume that the

implicit integer-to-pointer typecasts are safe. In a rare case, if the

size-invariant property is violated due to an implicit typecast some

bugs may remain undetected.

At a more general level, CGuard assumes that the developer’s

intent is benign. It also assumes a weaker form of type safety (dis-

cussed in the previous paragraph) and temporal safety. Existing

works have similar limitations. In SGXBounds[26] approach, if the

limit of the tagged pointer is modi�ed using an integer, the bounds

check may incorrectly succeed or fail at runtime. For BaggyBounds

[8], PAriCheck [42], and Low Fat Pointers [20, 21], an out-of-bound

pointer can be created and accessed using integer arithmetic. These

works also require source code refactoring. The primary reason be-

hind such limitations is that it is hard to statically track arithmetic

operations on an escaped integer that is also a pointer.

Our current implementation does not ensure safety for variable-

length arguments. To correctly handle this case, we require the

caller to pass the number of arguments for every function call.

In the future, we will investigate whether our work can be ex-

tended to support temporal safety. However, existing techniques

[12] for temporal safety can be used alongside our approach with

minor modi�cations for tagged pointers. We also plan to extend

CGuard to support an OS kernel.

6 RELATED WORK

Jones and Kelly [24] proposed the idea of object-bounds protec-

tion. However, it did not allow the creation of an out-of-bounds

pointer. CRED [36] improved on this work by supporting an in-

bounds pointer derived from an out-of-bounds pointer. However,

both these works su�ered from CPU overheads due to the splay-

tree-based implementation for bounds checking. Dhurjati and Adve

[19] reduced CPU overheads by using per-pool splay-trees instead

of a global splay-tree.

Baggy Bounds [8], PAriCheck [42], and Low Fat Pointers [20, 21]

further reduce the CPU overheads by adding extra padding to ob-

jects that allow them to locate the base addresswithout an expensive

search. However, these works do not provide precise object-bounds

protections because they allow the applications to access the padded

area. These works have also used the pointer tagging approach.

SGXBounds [26] provides precise object-bounds protection but

restricts the application address space to 32-bit on a 64-bit plat-

form. Delta Pointers [25] further reduces the CPU overheads of

SGXBounds by only detecting over�ows. Delta Pointers can support

48-bit address space provided the maximum object size is restricted

to 32 KB. Both SGXBounds and Delta Pointers use pointer tagging,

and they store the tag in the virtual address of the pointers, similar

to us. CUP [14] uses a table to compute the bounds of an object

at runtime. Because the table size can be huge, it limits the total

number of objects to 2
31 to restrict the table size and enable fast

indexing. The table index is embedded in the address of an object.

Another line of work provides spatial safety for pointer-bounds.

These approaches can detect sub-object over�ow at the cost of high

CPU and memory overheads because they need to store and update

bounds for every pointer.

CCured [16, 30] statically categorized the pointers into SAFE,

SEQ, and WILD. SAFE pointers are normal pointers and do not

require any checks. SEQ and WILD pointers are fat-pointers that

store the bounds information of pointers and objects and require

runtime checks. Cyclone [23] uses fat-pointers and also provides

programmers a variety of pointer quali�ers to control the runtime

checks. SoftBound [29] stores per-pointer metadata in a disjoint

address space for better compatibility. SafeC [9] and Xu et al. [40]

also track bounds for every pointer and can also detect temporal

safety bugs in addition to spatial safety bugs.

AddressSanitizer [37], Valgrind [32], and Purify [35] can only

detect sequential bu�er over�ows and under�ows, but they also

have much wider goals.

7 CONCLUSION

We presented CGuard, a tool that provides precise object-bounds

protection for C applications at low CPU and memory overheads

without restricting the application address space on the x86_64

platform. CGuard requires applications to obey a weak form of

type-safety. Our evaluation revealed that for most applications,

this property holds. The changes needed for applications that did

not satisfy the property were minor. CGuard was able to detect

spatial safety violations in widely used benchmarks. In particular,

it detected a bug in gcc that was not reported in any other works

to the best of our knowledge. This evaluation demonstrates that

our approach is e�ective and can scale to real applications.

1317

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Piyus Kedia, Rahul Purandare, Udit Agarwal, and Rishabh

REFERENCES
[1] Cguard. https://github.com/piyus/CGuard_proj.
[2] Analysis of nginx 1.3.9/1.4.0 stack bu�er over�ow and x64 exploitation (cve-2013-

2028). https://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-
2013-2028.html, 2013 (accessed Dec 2, 2021).

[3] Vulnerability details : Cve-2011-4971. https://www.cvedetails.com/cve/cve-2011-
4971, 2013 (accessed Dec 2, 2021).

[4] Intel 64 and ia-32 architectures developer’s manual: Vol. 1. https:
//www.intel.com/content/www/us/en/architecture-and-technology/64-
ia-32-architectures-software-developer-vol-1-manual.html, 2016 (accessed Dec
2, 2021).

[5] Intel 64 and ia-32 architectures software developer’s manual: 3d.
https://www.intel.in/content/www/in/en/architecture-and-technology/64-ia-
32-architectures-software-developer-vol-3d-part-4-manual.html, 2016 (accessed
Dec 2, 2021).

[6] Addresssanitizerfoundbugs. https://github.com/google/sanitizers/wiki/
AddressSanitizerFoundBugs#Spec_CPU_2006, 2018 (accessed Dec 2, 2021).

[7] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-�ow
integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC), 13(1):1–40, 2009.

[8] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy bounds
checking: An e�cient and backwards-compatible defense against out-of-bounds
errors. In USENIX Security Symposium, volume 10, 2009.

[9] Todd M Austin, Scott E Breach, and Gurindar S Sohi. E�cient detection of
all pointer and array access errors. In Proceedings of the ACM SIGPLAN 1994
conference on Programming Language Design and Implementation, pages 290–301,
1994.

[10] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza
Sadeghi. The guard’s dilemma: E�cient code-reuse attacks against intel {SGX}.
In 27th {USENIX} Security Symposium ({USENIX} Security 18), pages 1213–1227,
2018.

[11] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. Jump-oriented
programming: a new class of code-reuse attack. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security, pages 30–40,
2011.

[12] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. Software: Practice and Experience, 18(9):807–820, 1988.

[13] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec cpu2017: Next-
generation compute benchmark. In Companion of the 2018 ACM/SPEC Interna-
tional Conference on Performance Engineering, pages 41–42, 2018.

[14] Nathan Burow, Derrick McKee, Scott A Carr, and Mathias Payer. Cup: Com-
prehensive user-space protection for c/c++. In Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, pages 381–392, 2018.

[15] Stephen Checkoway, Ariel J Feldman, Brian Kantor, J Alex Halderman, EdwardW
Felten, and Hovav Shacham. Can dres provide long-lasting security? the case of
return-oriented programming and the avc advantage. EVT/WOTE, 2009, 2009.

[16] Jeremy Condit, Matthew Harren, Scott McPeak, George C Necula, and Westley
Weimer. Ccured in the real world. ACM SIGPLAN Notices, 38(5):232–244, 2003.

[17] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco Negro,
Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi. Losing
control: On the e�ectiveness of control-�ow integrity under stack attacks. In
Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security, pages 952–963, 2015.

[18] Joe Devietti, Colin Blundell, Milo MK Martin, and Steve Zdancewic. Hardbound:
Architectural support for spatial safety of the c programming language. ACM
SIGOPS Operating Systems Review, 42(2):103–114, 2008.

[19] Dinakar Dhurjati and Vikram Adve. Backwards-compatible array bounds check-
ing for c with very low overhead. In Proceedings of the 28th international conference
on Software engineering, pages 162–171, 2006.

[20] Gregory J Duck and RolandHCYap. Heap bounds protectionwith low fat pointers.
In Proceedings of the 25th International Conference on Compiler Construction, pages
132–142, 2016.

[21] Gregory J Duck, Roland HC Yap, and Lorenzo Cavallaro. Stack bounds protection
with low fat pointers. In NDSS, volume 17, pages 1–15, 2017.

[22] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Ti�any Tang,
Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed Okhravi.

Missing the point (er): On the e�ectiveness of code pointer integrity. In 2015
IEEE Symposium on Security and Privacy, pages 781–796. IEEE, 2015.

[23] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James Cheney,
and Yanling Wang. Cyclone: a safe dialect of c. In USENIX Annual Technical
Conference, General Track, pages 275–288, 2002.

[24] Richard WM Jones and Paul HJ Kelly. Backwards-compatible bounds checking
for arrays and pointers in c programs. In AADEBUG, volume 97, pages 13–26.
Citeseer, 1997.

[25] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos, and Cristiano
Giu�rida. Delta pointers: Bu�er over�ow checks without the checks. In Proceed-
ings of the Thirteenth EuroSys Conference, pages 1–14, 2018.

[26] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod
Bhatotia, Pascal Felber, and Christof Fetzer. Sgxbounds: Memory safety for
shielded execution. In Proceedings of the Twelfth European Conference on Computer
Systems, pages 205–221, 2017.

[27] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. Bug-
bench: Benchmarks for evaluating bug detection tools. In Workshop on the
evaluation of software defect detection tools, volume 5, 2005.

[28] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Sha�,
Vedvyas Shanbhogue, and Uday R Savagaonkar. Innovative instructions and
software model for isolated execution. Hasp@ isca, 10(1), 2013.

[29] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
Softbound: Highly compatible and complete spatial memory safety for c. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 245–258, 2009.

[30] George C Necula, Scott McPeak, and Westley Weimer. Ccured: Type-safe
retro�tting of legacy code. In Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 128–139, 2002.

[31] Nergal. The advanced return-into-lib(c) exploits: Pax case study. In Phrack
Magazine, Volume 11, Issue 0x58, 2001.

[32] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM Sigplan notices, 42(6):89–100, 2007.

[33] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. Intel mpx explained: A cross-layer analysis of the intel mpx system stack.
Proceedings of the ACM on Measurement and Analysis of Computing Systems,
2(2):1–30, 2018.

[34] Aleph One. Smashing the stack for fun and pro�t. Phrack magazine, 7(49):14–16,
1996.

[35] Bob Joyce Reed Hastings. Purify: Fast detection of memory leaks and access
errors. In In Proc. of the Winter 1992 USENIX Conference. Citeseer, 1991.

[36] Olatunji Ruwase andMonica S Lam. A practical dynamic bu�er over�ow detector.
In NDSS, volume 2004, pages 159–169, 2004.

[37] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. Addresssanitizer: A fast address sanity checker. In 2012 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 12), pages 309–318, 2012.

[38] Hovav Shacham. The geometry of innocent �esh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM conference on
Computer and communications security, pages 552–561, 2007.

[39] Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund,
and Thomas Walter. Breaking the memory secrecy assumption. In Proceedings of
the Second European Workshop on System Security, pages 1–8, 2009.

[40] Wei Xu, Daniel C DuVarney, and R Sekar. An e�cient and backwards-compatible
transformation to ensure memory safety of c programs. In Proceedings of the
12th ACM SIGSOFT Twelfth International Symposium on Foundations of Software
Engineering, pages 117–126, 2004.

[41] Richard M Yoo, Anthony Romano, and Christos Kozyrakis. Phoenix rebirth:
Scalable mapreduce on a large-scale shared-memory system. In 2009 IEEE Inter-
national Symposium on Workload Characterization (IISWC), pages 198–207. IEEE,
2009.

[42] Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro, R Sekar, Frank Piessens,
and Wouter Joosen. Paricheck: an e�cient pointer arithmetic checker for c
programs. In Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, pages 145–156, 2010.

[43] Bin Zeng, Gang Tan, and Greg Morrisett. Combining control-�ow integrity and
static analysis for e�cient and validated data sandboxing. In Proceedings of the
18th ACM conference on Computer and Communications Security, pages 29–40,
2011.

1318

https://github.com/piyus/CGuard_proj
https://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-2013-2028.html
https://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-2013-2028.html
https://www.cvedetails.com/cve/cve-2011-4971
https://www.cvedetails.com/cve/cve-2011-4971
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html
https://www.intel.in/content/www/in/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.html
https://www.intel.in/content/www/in/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.html
https://github.com/google/sanitizers/wiki/AddressSanitizerFoundBugs#Spec_CPU_2006
https://github.com/google/sanitizers/wiki/AddressSanitizerFoundBugs#Spec_CPU_2006

	Abstract
	1 Introduction
	2 Design
	2.1 Overview
	2.2 Identifying Static-Base
	2.3 Tagged Pointer
	2.4 Computing Bounds and Inserting Checks
	2.5 Size-Invariant
	2.6 Recovery from Size-Invariant Errors
	2.7 Library Calls
	2.8 Object Initialization and Memory Accesses

	3 Implementation
	4 Evaluation
	4.1 Experimental Setup and Benchmarks
	4.2 Performance
	4.3 Security
	4.4 Usability

	5 Limitations and future work
	6 Related work
	7 Conclusion
	References

